Abstract:
A highly sensitive method of analyzing a sample for the presence or activity of botulinum neurotoxin (BoNT) or antibodies specific for botulinum neurotoxin is disclosed. In one embodiment, the method comprises the steps of preparing primary non-human mammalian or avian spinal cord cells, and exposing the cells to a test sample, in parallel with a control sample, and examining the extent of cleavage of the intracellular neuronal target protein in both the test and control sample.
Abstract:
The present invention provides liquid crystal-based devices and methods for bioagent detection. In certain aspects, the present invention is directed to devices and methods utilizing liquid crystals and membranes containing polymerized targets that can report the presence of bioagents including, but not limited to, enzymes, antibodies, and toxins.
Abstract:
The present invention provides liquid crystal-based devices and methods for bioagent detection. In certain aspects, the present invention is directed to devices and methods utilizing liquid crystals and membranes containing polymerized targets that can report the presence of bioagents including, but not limited to, enzymes, antibodies, and toxins.
Abstract:
A device and method for conducting peristaltic pumping of a fluid in a body is provided. The body includes a channel having an input and an output and being partially defined by a flexible layer. A plurality of contacts are spaced along the layer and the channel is filled with the fluid. The plurality of spaced contacts is magnetically coupled to a magnetic field in sequence so as to translate peristaltic motion to the layer thereby pumping the fluid through the channel.
Abstract:
A drug delivery platform is provided for delivering a controlled infusion of a drug to an individual. The drug delivery platform includes a reservoir for receiving the drug therein and a hydrogel engageable with the reservoir. The hydrogel is movable between a first configuration and a second configuration wherein the hydrogel exerts a pressure on the reservoir to urge the drug therefrom in response to a predetermined stimulus. A flow guide distributes the predetermined stimulus over the hydrogel in response to activation by an individual.
Abstract:
A method is provided of generating a gradient within gel matrix received in a channel of a microfluidic device. A source reservoir in communication with the input of the channel is filled with a first fluid. A sink reservoir in communication with the output of the channel is filled with a second fluid. A soluble factor is deposited in the source reservoir such that the soluble factor diffuses into the channel and forms the gradient. The soluble factor in source reservoir is replenished to maintain the gradient in a generally pseudo-steady state and the second fluid in the sink reservoir is replaced.
Abstract:
A method is provided for sequentially patterning different particle populations on spatially defined regions in microfluidic device. The microfluidic device has a channel and a plurality of access ports therein. Each access port has an input and an output communicating with the channel. The method includes the step of depositing a drop of a first suspension on the input of a first access port. The first suspension includes a plurality of particles. A drop of a second suspension is deposited on the input of a second access port. The second suspension includes a plurality of particles. The particles in the first and second suspensions settle onto and are patterned along corresponding spaced portions of the channel.
Abstract:
A method is provided of controlling communication between multiple ports in a microfluidic device. The method includes the step of providing a channel network in a microfluidic device. The channel network including a first channel having a first input port and an output port. The first channel is filled with a fluid and a first output droplet is deposited on the output port. The first output droplet has a radius of curvature. The first output droplet flows toward the first input port in response to placement of a first input droplet having a radius of curvature greater than the radius of curvature of the first output droplet on the first input port. The first input droplet flows toward the output port in response to the first input droplet having a radius of curvature less than the radius of curvature of first output droplet.
Abstract:
A method is provided of conducting cell chromatography with a group of cells. Each cell has a fluorescence intensity. The method includes the step of depositing the group of cells into a first chamber for a first predetermined time period such that a first portion of cells of the group of cells attaches to a first surface. The cells unattached to the first surface are removed from the first chamber and deposited into a second chamber for a second predetermined time period. A second portion of cells of the unattached cells attach to a second surface. The cells unattached to the second surface are removed from the second chamber. Thereafter, the fluorescence intensities of the cells attached to the first and second surfaces are compared to a standard.
Abstract:
A variable-focus lens assembly is provided. The lens assembly includes a microfluidic device that defines a chamber for receiving a fluid therein. A slip having an aperture therethrough is disposed in the chamber. A first fluid is disposed on the first side of the slip and a second fluid is disposed on the second side of the slip. A lens is formed from the interface of the first and second fluids. The outer periphery is pinned to the slip about the aperture. A turning structure fabricated from a hydrogel material engages the slip and tunes the focal length of the lens in response to a predetermined stimulus.