Abstract:
A battery pack for an electric vehicle or a hybrid vehicle may include a housing, a stack of battery cells disposed within the housing, and a cooling subassembly. The housing typically holds the cell stack together, and the cooling subassembly typically cools the cell stack to prevent damage to the battery cells and to maintain the performance of the battery cells. The cooling subassembly may include a cold plate defining a liquid flow channel and one or more thermoelectric devices (TEDs) that are operable to cool the cell stack when current is supplied thereto. Heat spreaders may be employed within the battery pack, and exemplary configurations of components to thermally and mechanically couple the cooling subassembly are described.
Abstract:
A through the road (TTR) hybridization strategy is proposed to facilitate introduction of hybrid electric vehicle technology in a significant portion of current and expected trucking fleets. In some cases, the technologies can be retrofitted onto an existing vehicle (e.g., a truck, a tractor unit, a trailer, a tractor-trailer configuration, at a tandem, etc.). In some cases, the technologies can be built into new vehicles. In some cases, one vehicle may be built or retrofitted to operate in tandem with another and provide the hybridization benefits contemplated herein. By supplementing motive forces delivered through a primary drivetrain and fuel-fed engine with supplemental torque delivered at one or more electrically-powered drive axles, improvements in overall fuel efficiency and performance may be delivered, typically without significant redesign of existing components and systems that have been proven in the trucking industry.
Abstract:
A power control system may include at least one of batteries, a motor, and a data logic analyzer that can interpret certain variable conditions of a transport, such as a tractor trailer, moving along a road or highway. The data can be used to determine when to apply supplemental power to the wheels of a trailer to reduce fuel usage. One example device may include at least one of a power source affixed to a trailer to capture energy from movement of an axle of the trailer, and a motor powered by the power source to operate and provide movement assistance to the axle.
Abstract:
A power control system may include at least one of batteries, a motor, and a data logic analyzer that can interpret certain variable conditions of a transport, such as a tractor trailer, moving along a road or highway. The data can be used to determine when to apply supplemental power to the wheels of a trailer to reduce fuel usage. One example device may include at least one of: a power creation module that generates electrical power, a battery which store the electrical power, a motor affixed to a trailer axle of a trailer which provides a turning force to the trailer axle when enabled to operate from the stored electrical power of the battery, and a motor controller configured to initiate the motor to operate according to a predefined sensor condition.
Abstract:
A through the road (TTR) hybridization strategy is proposed to facilitate introduction of hybrid electric vehicle technology in a significant portion of current and expected trucking fleets. In some cases, the technologies can be retrofitted onto an existing vehicle (e.g., a trailer, a tractor-trailer configuration, etc.). In some cases, the technologies can be built into new vehicles. In some cases, one vehicle may be built or retrofitted to operate in tandem with another and provide the hybridization benefits contemplated herein. By supplementing motive forces delivered through a primary drivetrain and fuel-fed engine with supplemental torque delivered at one or more electrically-powered drive axles, improvements in overall fuel efficiency and performance may be delivered, typically without significant redesign of existing components and systems that have been proven in the trucking industry.
Abstract:
A power control system may include at least one of batteries, a motor, and a data logic analyzer that can interpret certain variable conditions of a transport, such as a tractor trailer, moving along a road or highway. The data can be used to determine when to apply supplemental power to the wheels of a trailer to reduce fuel usage. One example device may include at least one of: a power creation module that generates electrical power, a battery which store the electrical power, a motor affixed to a trailer axle of a trailer which provides a turning force to the trailer axle when enabled to operate from the stored electrical power of the battery, and a motor controller configured to initiate the motor to operate according to a predefined sensor condition.
Abstract:
Through-the-road (TTR) hybrid designs using control strategies such as an equivalent consumption minimization strategy (ECMS) or adaptive ECMS are implemented at the supplemental torque delivering electrically-powered drive axle (or axles) in a manner that follows operational parameters or computationally estimates states of the primary drivetrain and/or fuel-fed engine, but does not itself participate in control of the fuel-fed engine or primary drivetrain. On vehicle adaptation of BSFC type data for paired-with fuel-fed engine allows an ECMS implementation (or other similar control strategy) to refine efficiency curves for the particular fuel-fed engine and/or operating conditions in a manner that can improve overall efficiencies of a TTR hybrid configuration.
Abstract:
Systems and methods for immobilization of a vehicle include a remote device coupled to a network, the remote device including a transceiver, and a vehicle including a communication interface coupled to the network, the communication interface configured to provide telematics data to, and receive commands from, the transceiver. The system further includes an energy store on the vehicle, the energy store configured to supply electrical power to the communication interface. In some embodiments, at least one of the commands received from the transceiver is configured to immobilize the vehicle. In some cases, the at least one command received from the transceiver is configured to release air pressure in an air line of the vehicle to actuate a plurality of air brakes on the vehicle, or to actuate a wheel-lock mechanism within an electrically powered drive axle on the vehicle.
Abstract:
A power control system may include at least one of batteries, a motor, and a data logic analyzer that can interpret certain variable conditions of a transport, such as a tractor trailer, moving along a road or highway. The data can be used to determine when to apply supplemental power to the wheels of a trailer to reduce fuel usage. One example device may include at least one of a power source affixed to a trailer to capture energy from movement of an axle of the trailer, and a motor powered by the power source to operate and provide movement assistance to the axle.
Abstract:
Systems and methods of providing a configurable powertrain in a vehicle are disclosed. The powertrain is capable of operating in a plurality of powertrain configurations and includes one or more reversible generators, a battery system, a motor/generator (M/G), and one or more drive axles. The generators generate and supply electrical power to the battery system, the M/G, an external power source, or a combination thereof. The battery system selectively supplies electrical power to the generators, the M/G, the external power source, or a combination thereof. The one or more generators also selectively supply cooling to the battery system, a cab of the vehicle, a trailer or external enclosure or structure of the vehicle, or a combination thereof. The powertrain configurations of the vehicle include operating the components of the powertrain in various combinations based on demands of the vehicle and/or external power sources or structures.