Abstract:
An amino acid composition for collagen formation includes a first chain unit component, a second chain unit component, and a third chain unit component of collagen. The first chain unit component, the second chain unit component, and the third chain unit component are the same or different from each other, and each of the first chain unit component, the second chain unit component, and the third chain unit component is selected from the group consisting of al chain component, α2 chain component, α3 chain component, α4 chain component, α5 chain component, and α6 chain component. The amino acid composition includes Alanine, Phenylalanine, Cysteine, Aspartate, Asparagine, Glutamate, Glutamine, Glycine, Histidine, Leucine, Isoleucine, Lysine, Methionine, Proline, Arginine, Serine, Threonine, Valine, Tryptophan, and Tyrosine and/or the pharmaceutically acceptable salt or ester derivatives thereof.
Abstract:
Methods and systems are provided for routing traffic through a virtual router-based network switch. According to one embodiment, a flow data structure is established that identifies current packet flows associated with multiple virtual routers in the virtual router-based network device. When an incoming packet is received by the virtual router-based network device, it is then determined whether the incoming packet is associated with a current packet flow by accessing the flow data structure based on a header associated with the incoming packet. If it is determined that the incoming packet is associated with the current packet flow, then the incoming packet is hardware forwarded via a network interface of the virtual router-based network device without intervention by a processor of the virtual router-based network device, otherwise the incoming packet is forwarded to software on the processor for flow learning.
Abstract:
A substrate structure and the fabrication method thereof are provided herein. The present invention utilizes a laminate as the support of the package process and then removes the laminate after the following package steps so as to obtain a quite smooth surface for using in the internal-plane structure of the circuit board and a stacking structure that can be applied to many different types of the chip package structures.
Abstract:
A packet-forwarding engine (PFE) of a multiprocessor system uses an array of flow classification block (FCB) indices to multicast a packet. Packets are received and buffered in external memory. In one embodiment, when a multicast packet is identified, a bit is set in a packet descriptor and an FCB index is generated and sent with a null-packet to the egress processors which generate multiple descriptors with different indices for each instance of multicasting. All the descriptors may point to the same buffer in the external memory, which stores the multicast packet. A DMA engine reads from the same buffer multiple times and egress processors may access an appropriate transform control block (TCB) index so that the proper headers may be installed on the outgoing packet. The buffer may be released after the last time the packet is read by setting a particular bit of the FCB index.
Abstract:
Methods and systems are provided for applying metering and rate-limiting in a virtual router environment and supporting a hierarchy of metering/rate-limiting contexts per packet flow. According to one embodiment, multiple first level metering options and multiple second level metering options associated with a hierarchy of metering levels are provided. A virtual routing engine receives packets associated with a first packet flow and packets associated with a second packet flow. The virtual routing engine performs a first type of metering of the first level metering options on the packets associated with the first packet flow using a first metering control block (MCB) and performs a second type of metering of the second level metering options on the packets associated with the first packet flow and the packets associated with the second flow using a second MCB.
Abstract:
A method for routing packets in a router includes establishing a flow data structure identifying a packet flow through a virtual router in the router. Next, a system executing the method receives a packet, said packet having at least one packet header. The method then compares a subset of the at least one packet header to a subset of the flow data structure. If the subset of the at least one packet header matches the subset of the flow data structure, then the packet can be hardware accelerated to a network interface. Otherwise, the packet can be either dropped, or forwarded to a general purpose processor for processing.
Abstract:
A disc drive includes a base and a disc rotatably attached to the base. The disc has an inner diameter and an outer diameter and a plurality of tracks. Information is written on the plurality of tracks. The plurality of tracks are written at a variable track pitch. The tracks positioned near the outer diameter are wider in pitch than the tracks positioned near the inner diameter. The plurality of tracks further include a first group of tracks written at a first track pitch, and a second group of tracks written at a second track pitch. The track pitch of each of the first group and the second group of tracks is selected such that the percentage of track misregistration for each group will be substantially the same. This method provides a means to increase storage capacity for a predetermined track misregistration budget.
Abstract:
An HDA includes a base, a disc stack coupled to a spindle rotatably attached to the base by a spindle shaft and spindle bearing. An actuator assembly is pivotally attached to the base at a pivot shaft. Attached to one end of the actuator assembly proximal the disc stack is one or more transducers for reading/writing information from/to the discs. A servo writer includes a controller for moving the actuator during the servo writing process. The controller moves the servo writer at the cage frequency of the spindle bearing to lessen the relative motion between the transducer head and the disc as the servo information is written to the disc. The controller also may be programmed to move the transducer at both the spindle rotation frequency and the cage frequency of the spindle bearing to lessen the relative motion between the transducer and the disc during the servo writing process.
Abstract:
Methods and systems are provided for hardware-accelerated packet multicasting in a virtual routing system. According to one embodiment, a virtual routing engine (VRE) including virtual routing processors and corresponding memory systems are provided. The VRE implements virtual routers (VRs) operable on the virtual routing processors and associated routing contexts utilizing potentially overlapping multicast address spaces resident in the memory systems. Multicasting of multicast flows originated by subscribers of a service provider is simultaneously performed on behalf of the subscribers. A VR is selected to handle multicast packets associated with a multicast flow. A routing context of the VRE is switched to one associated with the VR. A packet of the multicast flow is forwarded to multiple destinations by reading a portion of the packet from a common buffer for each instance of multicasting and applying transform control instructions to the packet for each instance of multicasting.
Abstract:
Methods and systems are provided for applying metering and rate-limiting in a virtual router environment and supporting a hierarchy of metering/rate-limiting contexts per packet flow. According to one embodiment, multiple first level metering options and multiple second level metering options associated with a hierarchy of metering levels are provided. A virtual routing engine receives packets associated with a first packet flow and packets associated with a second packet flow. The virtual routing engine performs a first type of metering of the first level metering options on the packets associated with the first packet flow using a first metering control block (MCB) and performs a second type of metering of the second level metering options on the packets associated with the first packet flow and the packets associated with the second packet flow using a second MCB.