Abstract:
A capacitance difference detecting circuit includes a control circuit, for generating a control signal according to a first voltage and a second voltage; a first capacitor to be detected; a second capacitor to be detected; a first constant capacitor, having a terminal coupled to the first terminal of the first capacitor to be detected and the first input terminal; a second constant capacitor, having a terminal coupled to the first terminal of the second capacitor to be detected and the second input terminal; a voltage control unit, cooperating with the first capacitor to be detected, the second capacitor to be detected, the first constant capacitor and the second constant capacitor to control the first voltage and the second voltage. The voltage control unit is an adjustable capacitor and a capacitance value of the adjustable capacitor is controlled by the control signal.
Abstract:
A buffer layer for promoting electron mobility. The buffer layer comprises amorphous silicon layer (a-Si) and an oxide-containing layer. The a-Si has high enough density that the particles in the substrate are prevented by the a-Si buffer layer from diffusing into the active layer. As well, the buffer, having thermal conductivity, provides a good path for thermal diffusion during the amorphous active layer's recrystallization by excimer laser annealing (ELA). Thus, the uniformity of the grain size of the crystallized silicon is improved, and electron mobility of the TFT is enhanced.
Abstract:
A thin-film solar cell includes a body and a polymer layer. The body includes a first electrode layer, a photoelectric conversion layer, and a second electrode layer, and the polymer layer includes a hardening material and an interface material. The photoelectric conversion layer is disposed between the first electrode layer and the second electrode layer, and the polymer layer surrounds the photoelectric conversion layer, in which the interface material is used for bonding to the hardening material and the photoelectric conversion layer respectively. Therefore, the thin-film solar cell may reduce the Staebler-Wronski Effect generated by the photoelectric conversion layer in the photoelectric conversion procedure. Accordingly, the photoelectric conversion efficiency is improved.
Abstract:
A thin-film solar cell and a method for manufacturing the same are presented, in which the dopant concentration turns low in a sloping way. The solar cell includes a substrate, a first contact region, a photoelectric conversion layer, and a second contact region. The first contact region a photoelectric conversion layer, and a second contact region are disposed on the substrate. At least one of the first contact region and the second contact region contains an N-type dopant, and the concentration of the N-type dopant is decreased gradually in a direction towards the photoelectric conversion layer. Through the thin-film solar cell and the method for manufacturing the same, the conversion efficiency of the solar cell is improved, and the thin-film solar cell and the manufacturing method are capable of being integrated with an existing manufacturing process of a solar cell, thereby simplifying the manufacturing process and reducing the cost.
Abstract:
In one aspect of the present invention, a photovoltaic panel includes a substrate, a reflective layer formed on the substrate, a first conductive layer formed on the reflective layer, an active layer formed on the first conductive layer, and a second conductive layer formed on the active layer. The reflective layer has an index of refraction and a thickness such that the reflectance spectrum of the photovoltaic device for light incident on the substrate has a maximum in a selected wavelength range in the visible spectrum.
Abstract:
A solar cell module includes a substrate having a thin-film layer patterned in a manner to form with a split window and a solar cell disposed on the substrate. The solar cell includes plurality of material layers and a plurality of split ways corresponding to the material layers. The scope of the split window is constituted by at least one of the split ways.
Abstract:
A method of forming an optical sensor includes the following steps. A substrate is provided, and a read-out device is formed on the substrate. a first electrode electrically connected to the read-out device is formed on the substrate. a photosensitive silicon-rich dielectric layer is formed on the first electrode, wherein the photosensitive silicon-rich dielectric layer comprises a plurality of nanocrystalline silicon crystals. A second electrode is formed on the photosensitive silicon-rich dielectric layer.
Abstract:
A photo detector has a sensing TFT (thin film transistor) and a photodiode. The sensing TFT has a gate and a base. The photodiode has an intrinsic semiconductor region electrically connected to the gate and the base of the sensing TFT. The sensing TFT and the photodiode both have a structure comprising low temperature poly-silicon. A display panel contains the photo detector is also disclosed.
Abstract:
A forming method of the present invention includes forming a first patterned conductive layer, which includes a transparent conductive layer and a metal layer stacked together on a substrate, where the first patterned conductive layer functions as gate lines, gate electrodes, common lines and predetermined transparent pixel electrode structures; and forming a second patterned conductive layer on the substrate. The second patterned conductive layer includes data lines and reflective pixel electrodes, and be directly connected to doping regions, such as source regions/drain regions. According to the forming method of the present invention, pixel structures of a transflective liquid crystal display device can be formed through five mask processes. Therefore, the manufacturing process of the transflective liquid crystal display device is effectively simplified, so the product yield is improved and the cost can be reduced.
Abstract:
A thin film transistor (TFT) formed on a transparent substrate is provided. The thin film transistor includes a patterned semiconductor layer, a gate insulating layer disposed on the patterned semiconductor layer, a gate electrode disposed on the gate insulating layer, and a patterned light-absorbing layer. The patterned semiconductor layer includes a channel region, and a source region and a drain region disposed on two opposite sides of the channel region in the pattern semiconductor layer. The patterned light-absorbing layer is disposed between the transparent substrate and the patterned semiconductor layer.