Abstract:
A method of making a porous membrane is disclosed. One such method optionally includes: forming a plurality of pillars in an array form over a substrate; and forming a layer with a mixture of a porous material precursor and a surfactant over the substrate. The method optionally includes removing the pillars to leave cavities in the layer; filling the cavities in the layer with a cavity filler; and removing the surfactant from the layer. The porous membrane can be used as, for example, a sieve for separating molecules from a chemical reaction.
Abstract:
Core-shell nanoparticles having a core material and a mesoporous silica shell, and a method for manufacturing the core-shell nanoparticles are provided.
Abstract:
One or more techniques for nano structure fabrication are provided. In an embodiment, an apparatus for manufacturing a nano structure is disclosed. The apparatus includes a stamp having a line pattern on a surface thereof that comprises a plurality of protrusions, a die configured to hold a substrate thereon, and a mechanical processing unit configured to press the plurality of protrusions of the stamp against the substrate with a predetermined pressure so as to form at least one channel pore therebetween.
Abstract:
Systems and methods of forming an electrode on a substrate are disclosed. The methods can include applying a solution including metal ions and metal nanomaterials to a surface of a substrate. The methods further can include exposing a selected portion of the solution with light having a wavelength capable of inducing reduction of the metal ions, wherein the selected portion corresponds to at least a portion of the electrode.
Abstract:
Methods for preparing one or more conductive nanostructures are provided. In accordance with one embodiment, a method for preparing one or more conductive nanostructures may include providing a composite of nanoparticles and block copolymer including one or more first microdomains and one or more second microdomains, where conductive nanoparticles are selectively distributed in the one or more first microdomains, removing the first microdomains while leaving the conductive nanoparticles in the composite, forming one or more conductive nanostructures on the conductive nanoparticles, and removing the second microdomains.
Abstract:
Techniques for coating a fiber with metal oxide include forming silica in the fiber to fix the metal oxide to the fiber. The coated fiber can be used to facilitate photocatalysis.
Abstract:
A method for manufacturing a nano pattern writer includes forming one or more grooves on a first layer, depositing a substance on the first layer to form a film on the first layer, polishing the film on the first layer to thereby form a patterned film that fills the one or more grooves on the first layer, placing a second layer over the patterned film to thereby form a layered structure interposing the patterned film between the first layer and the second layer, and removing a part of the first layer and the second layer to thereby expose portions of the patterned film.
Abstract:
A composite structure and methods of making and using are provided. The composite structure includes at least one nanofiber having silicon-based material and at least one carbon nanotube associated with the nanofiber. The silicon-based material includes one or more of silicon carbide, silicon oxycarbide, silicon nitride and silicon oxide.
Abstract:
A piezoelectric nanodevice may include a first substrate having formed thereon a multiple number of nanorods and a second substrate having formed thereon a multiple number of piezoelectric nanorods. The first substrate associates with the second substrate to generate friction between the nanorods of the first substrate and the piezoelectric nanorods of the second substrate.