Abstract:
The subject innovation relates to a system and/or methodology that provides an automated and dynamically responsive infrastructure to support online subscription services. The system coordinates and manages services offered by service providers. This can include automatically creating and managing billing accounts for customers. At least one engine is provided to process multiple rules in response to subscription events that occur in connection with the services to facilitate service delivery. At least one rating processor is provided to process multiple rating rules in response to subscription events.
Abstract:
The adaptive bandwidth throttling system implements a graceful diminution of services to the clients by delaying a first class of services provided by a network server in response to the effective bandwidth utilized by this network server exceeding a first threshold. If the demand for the bandwidth by this network server exceeds a second threshold, the bandwidth throttling system escalates the throttling response and blocks the first class of services from execution and can also concurrently delay execution of a second class of services. The implementation of the throttling process can be varied, to include additional levels of response or finer gradations of the response, to include subsets of a class of services. In addition, the threshold levels of bandwidth used to trigger the throttling response can be selected as desired by the system administrator.
Abstract:
The adaptive bandwidth throttling system implements a graceful diminution of services to the clients by delaying a first class of services provided by a network server in response to the effective bandwidth utilized by this network server exceeding a first threshold. If the demand for the bandwidth by this network server exceeds a second threshold, the bandwidth throttling system escalates the throttling response and blocks the first class of services from execution and can also concurrently delay execution of a second class of services. The implementation of the throttling process can be varied, to include additional levels of response or finer gradations of the response, to include subsets of a class of services. In addition, the threshold levels of bandwidth used to trigger the throttling response can be selected as desired by the system administrator. Typically, once the effective bandwidth utilization is approximately equal to the allocated bandwidth for the network server, the first level of the hierarchical bandwidth throttling is activated. The second level of the hierarchical bandwidth throttling is activated once the effective bandwidth utilization exceeds the allocated bandwidth for the network server by greater than a predetermined amount.
Abstract:
A session manager has a session timeout mechanism to selectively timeout client-server sessions. The session timeout mechanism has multiple timeout buckets to hold corresponding groups of sessions according to the sessions' timeout periods. Sessions located in different ones of the timeout buckets are set to timeout at different times. The session manager also has a session timeout clock that is incremented every predetermined time unit (e.g., every minute). The session timeout clock maintains a pointer to one of the timeout buckets and advances that pointer with each clock increment. The session timeout clock advances the pointer through all of the timeout buckets, one bucket at a time. The session timeout clock advances the pointer repeatedly through all the buckets. The cycle time for the session timeout clock to reference every timeout bucket is equal to the incremental time unit multiplied by the number of buckets. A new session (or one that recently received a request and is restarting its timeout period) is inserted into a timeout bucket that is one or more buckets ahead of the clock pointer, depending upon the session's timeout period. When the timeout clock references a particular bucket, the sessions in that bucket are analyzed for possible timeout. Sessions whose timeout period has run without receiving any new requests are timed out and removed from the bucket.
Abstract:
A bandwidth throttling system is implemented on a server network connected to a computer network system to serve one or more clients over a network. The network server supports a service that presents multiple virtual services that can be individually requested by the clients. The bandwidth throttling system controls bandwidth on a per virtual service basis. The bandwidth throttling system has a measuring subsystem to measure the amount of bandwidth being used by each virtual service supported by the network server. The bandwidth throttling system also has a control subsystem to selectively throttle requests for a particular virtual service independently of others based upon the bandwidth used by the particular virtual service. The bandwidth throttling system utilizes an adaptive, hierarchical throttling strategy that is applied to each virtual service independently. The bandwidth throttling system compares the bandwidth usage for the virtual service against the administrator-defined thresholds for that virtual service. If the presently used bandwidth exceeds a first threshold, a first set of throttling actions is applied. If the presently used bandwidth exceeds a second threshold greater than the first threshold, a different second set of throttling actions is applied. In this manner, the administrator is given maximum control at setting throttling policies for each individual virtual service independently of other virtual services.
Abstract:
A system for generating message headers where previously saved message headers are retrieved from memory when needed to satisfy a message header requirement. Message headers are comprised of segments where each message header segment has a different lifetime. In particular, a file-object response message header includes a header segment containing information linked to the requested file-object. This file-object linked header segment is retrieved when needed from a file-object header cache. A file-object response message header includes other segments such as one containing time-variant global information and time-invariant global information. Building header messages from multiple segments retrieved from their respective cache memories saves significant processing time as compared to generating a new message header each time a header is required by operation of a network server application.
Abstract:
Methods and devices for encoding and interleaving data packets for broadcast and for de-interleaving and decoding data packets in a communication system eliminate detrimental biasing effects by using pseudo-random M-sequence bit encoding as part of the turbo encoding and decoding. The use of pseudo-random M-sequence bit encoding mitigates biasing effects that may otherwise be introduced if conventional r-c interleaving is applied to long turbo encoded data which would degrade reception in the presence of broadcast interference.
Abstract:
Techniques for multiplexing multiple data streams using frequency division multiplexing (FDM) in an OFDM system are described. M disjoint “interlaces” are formed with U usable subbands. Each interlace is a different set of S subbands, where U=M·S. The subbands for each interlace are interlaced with the subbands for each of the other M−1 interlaces. M slots may be defined for each symbol period and assigned slot indices 1 through M. The slot indices may be mapped to interlaces such that (1) frequency diversity is achieved for each slot index and (2) the interlaces used for pilot transmission have varying distances to the interlaces used for each slot index, which improves channel estimation performance. Each data stream may be processed as data packets of a fixed size, and different numbers of slots may be used for each data packet depending on the coding and modulation scheme used for the data packet.
Abstract:
Reference free tracking of position by a mobile platform is performed using images of a planar surface. Tracking is performed optical flow techniques, such as pyramidal Lucas-Kanade optical flow with multiple levels of resolution, where displacement is determined with pixel accuracy at lower resolutions and at sub-pixel accuracy at full resolution, which improves computation time for real time performance. Periodic drift correction is performed by matching features between a current frame and a keyframe. The keyframe may be replaced with the drift corrected current image.
Abstract:
A repeated integral images method filters image data in only two passes, e.g., the first pass filters horizontal rows of pixels and a second pass filters vertical columns of pixels, or in a single pass. The filter performs at least one infinite impulse response (IIR) filter and at least one finite impulse response (FIR) filter on the image data. A plurality of IIR filters and FIR filters maybe performed to approximate a Gaussian filter. By minimizing the number of passes, the data flow between the processing unit and the storage unit is greatly reduced compared to conventional repeated integral images method thereby improving computation time.