Abstract:
A system may include M N-bit×N-bit multipliers to output M 2N-bit products in a redundant format, a compressor to receive the M 2N-bit products and to generate an MN-bit product in a redundant format based on the M 2N-bit products, and an adder block to receive the M 2N-bit products and the MN-bit product, to select one from the M 2N-bit products or the MN-bit product, and to resolve the selected one of the M 2N-bit products or the MN-bit product to a non-redundant format.
Abstract:
For one disclosed embodiment, an apparatus comprises first circuitry to output encoded data from an addressable location based at least in part on an address corresponding to a first number, wherein the encoded data is based at least in part on data that corresponds to the first number and that is encoded for partial product reduction, and second circuitry to generate a product based at least in part on the encoded data and on data corresponding to a second number. Other embodiments are also disclosed.
Abstract:
Embodiments of apparatuses and methods for multiplicand shifting in a linear systolic array modular multiplier are disclosed. In one embodiment, an apparatus includes two processing elements of a linear systolic array. One processing element includes multiplication logic, multiplicand shift logic, an adder, modulus logic, and modulus shift logic. The multiplication logic is to multiply a word of the multiplicand and a bit of the multiplier to generate a product. The multiplicand shift logic is to shift the word of the multiplicand. The adder is to add the product to a first running sum to generate a second running sum. The modulus logic is to conditionally add a word of a modulus and the second running sum. The modulus shift logic is to shift the word of the modulus. The next processing element includes logic to multiply the shifted word of the multiplicand and the next bit of the multiplier.
Abstract:
Disclosed herein are solutions for providing adaptive keeper functionality to dynamic logic circuits. In some embodiments, a programmable keeper circuit is coupled to a register file circuit. Included is a leakage indicator circuit to model leakage in at least a portion of the register file. A control circuit is coupled to the leakage indicator circuit and to the programmable keeper circuit to control the keeper strength in accordance with the modeled leakage. Other embodiments are claimed or otherwise disclosed.
Abstract:
A single ended current sensed bus with novel static power free receiver circuit is described herein. In one embodiment, a receiver circuit example includes a latch circuit to latch values for a first output and a second output during an evaluation phase in response to an input, a pre-charge circuit coupled to the latch circuit to pre-charge the latch circuit during a pre-charge phase, and a static power dissipation blocking (SPDB) circuit coupled to the pre-charge circuit and the latch circuit to substantially block static power from being dissipated during the pre-charge phase. Other methods and apparatuses are also described.
Abstract:
Method and apparatus for configuring the operation of an integrated circuit. An integrated circuit with external programming capabilities is disclosed. A pin current source is provided for interfacing with at least one pin on the integrated circuit to control current flow there through to an external load interfaced to the at least one pin external to the integrated circuit. The external load has at least two discrete values. A voltage detector detects the voltage on the at least one pin and a state detector then compares the voltage on the at least one pin to at least two discrete voltage thresholds. Each of the discrete voltages is associated with a separate value of a control word, and the state detector is operable to determine the value of the control word associated with the detected voltage. The state detector then outputs the determined value of the control word.
Abstract:
In some embodiment, a circuit is provided that comprises a bit line and bit cells coupled to the bit line. The bit line has an impedance. The bit cells, when operated, are each capable of adjusting the bit line impedance to indicate a stored bit value and a selected one of at least two read ports. Other embodiments are described or otherwise claimed herein.
Abstract:
An interconnect architecture is provided to reduce power consumption. A first driver may drive signals on a first interconnect and a second driver may drive signals on a second interconnect. The first driver may be powered by a first voltage and the second driver may be powered by a second voltage different than the first voltage.
Abstract:
In an embodiment, a dynamic bus includes a dynamic bus repeater with a noise margin of about Vcc/2. The bus repeater splits the bus into front and rear segments. The front segment pre-charges while the rear segment evaluates, and vice versa. The dynamic bus repeater hides the pre-charge signal propagated from the front segment from the rear segment while the rear segment is evaluating.