Abstract:
Device fabrication is disclosed, including forming a first part of a device at a first fabrication facility as part of a front-end-of-the-line (FEOL) process, the first part of the device comprising a base wafer formed by FEOL processing, and subsequently performing one or more back-end-of-the-line (BEOL) processes at a second fabrication facility to form an IC, the one or more BEOL processes comprising finishing the forming of the device (e.g., an IC including memory) by depositing one or more memory layers on the base wafer. FEOL processing can be used to form active circuitry die (e.g., CMOS circuitry on a Si wafer) and BEOL processing can be used to form on top of each active circuitry die, one or more layers of cross-point memory arrays formed by thin film processing technologies that may or may not be compatible with or identical to some or all of the FEOL processes.
Abstract:
A non-Flash non-volatile cross-trench memory array formed using an array of trenches formed back-end-of-the-line (BEOL) over a front-end-of-the-line (FEOL) substrate includes two-terminal memory elements operative to store at least one bit of data that are formed at a cross-point of a first trench and a second trench. The first and second trenches are arranged orthogonally to each other. At least one layer of memory comprises a plurality of the first and second trenches to form a plurality of memory elements. The non-volatile memory can be used to replace or emulate other memory types including but not limited to embedded memory, DRAM, SRAM, ROM, and FLASH. The memory is randomly addressable down to the bit level and erase or block erase operation prior to a write operation are not required.
Abstract:
A structure for a memory device including a plurality of substantially planar thin-film layers or a plurality of conformal thin-film layers is disclosed. The thin-film layers form a memory element that is electrically in series with first and second cladded conductors and operative to store data as a plurality of conductivity profiles. A select voltage applied across the first and second cladded conductors is operative to perform data operations on the memory device. The memory device may optionally include a non-ohmic device electrically in series with the memory element and the first and second cladded conductors. Fabrication of the memory device does not require the plurality of thin-film layers be etched in order to form the memory element. The memory element can include a CMO layer having a selectively crystallized polycrystalline portion and an amorphous portion. The cladded conductors can include a core material made from copper.
Abstract:
A structure for a memory device including a plurality of substantially planar thin-film layers or a plurality of conformal thin-film layers is disclosed. The thin-film layers form a memory element that is electrically in series with first and second cladded conductors and operative to store data as a plurality of conductivity profiles. A select voltage applied across the first and second cladded conductors is operative to perform data operations on the memory device. The memory device may optionally include anon-ohmic device electrically in series with the memory element and the first and second cladded conductors. Fabrication of the memory device does not require the plurality of thin-film layers be etched in order to form the memory element. The memory element can include a CMO layer having a selectively crystallized polycrystalline portion and an amorphous portion. The cladded conductors can include a core material made from copper.
Abstract:
Memory cell formation using ion implant isolated conductive metal oxide is disclosed, including forming a bottom electrode below unetched conductive metal oxide layer(s), forming the unetched conductive metal oxide layer(s) including depositing at least one layer of a conductive metal oxide (CMO) material (e.g., PrCaMnOX, LaSrCoOX, LaNiOX, etc.) over the bottom electrode. At least one portion of the layer of CMO is configured to act as a memory element without etching, and performing ion implantation on portions of the layer(s) of CMO to create insulating metal oxide (IMO) regions in the layer(s) of CMO. The IMO regions are positioned adjacent to electrically conductive CMO regions in the unetched layer(s) of CMO and the electrically conductive CMO regions are disposed above and in contact with the bottom electrode and form memory elements operative to store non-volatile data as a plurality of conductivity profiles (e.g., resistive states indicative of stored data).
Abstract:
A structure for a memory device including a plurality of substantially planar thin-film layers or a plurality of conformal thin-film layers is disclosed. The thin-film layers form a memory element that is electrically in series with first and second cladded conductors and operative to store data as a plurality of conductivity profiles. A select voltage applied across the first and second cladded conductors is operative to perform data operations on the memory device. The memory device may optionally include a non-ohmic device electrically in series with the memory element and the first and second cladded conductors. Fabrication of the memory device does not require the plurality of thin-film layers be etched in order to form the memory element. The memory element can include a CMO layer having a selectively crystallized polycrystalline portion and an amorphous portion. The cladded conductors can include a core material made from copper.
Abstract:
A structure for a memory device including a plurality of substantially planar thin-film layers or a plurality of conformal thin-film layers is disclosed. The thin-film layers form a memory element that is electrically in series with first and second cladded conductors and operative to store data as a plurality of conductivity profiles. A select voltage applied across the first and second cladded conductors is operative to perform data operations on the memory device. The memory device may optionally include a non-ohmic device electrically in series with the memory element and the first and second cladded conductors. Fabrication of the memory device does not require the plurality of thin-film layers be etched in order to form the memory element. The memory element can include a CMO layer having a selectively crystallized polycrystalline portion and an amorphous portion. The cladded conductors can include a core material made from copper.
Abstract:
Methods for post-etch deposition on a dielectric film are provided in the present invention. In one embodiment, the method includes providing a substrate having a low-k dielectric layer disposed thereon in a etch reactor, etching the low-k dielectric layer in the etch reactor, and forming a protection layer on the etched low-k dielectric layer. In another embodiment, the method includes providing a substrate having a low-k dielectric layer disposed thereon in an etch reactor, etching the low-k dielectric layer in the reactor, bonding the etched low-k dielectric layer with a polymer gas supplied into the reactor, forming a protection layer on the etched low-k dielectric layer, and removing the protection layer formed on the etched low-k dielectric layer.
Abstract:
Methods for post-etch deposition on a dielectric film are provided in the present invention. In one embodiment, the method includes providing a substrate having a low-k dielectric layer disposed thereon in a etch reactor, etching the low-k dielectric layer in the etch reactor, and forming a protection layer on the etched low-k dielectric layer. In another embodiment, the method includes providing a substrate having a low-k dielectric layer disposed thereon in an etch reactor, etching the low-k dielectric layer in the reactor, bonding the etched low-k dielectric layer with a polymer gas supplied into the reactor, forming a protection layer on the etched low-k dielectric layer, and removing the protection layer formed on the etched low-k dielectric layer.
Abstract:
A method and apparatus for heating and cooling a substrate are provided. A chamber is provided that comprises a heating mechanism adapted to heat a substrate positioned proximate the heating mechanism, a cooling mechanism spaced from the heating mechanism and adapted to cool a substrate positioned proximate the cooling mechanism, and a transfer mechanism adapted to transfer a substrate between the position proximate the heating mechanism and the position proximate the cooling mechanism.