Abstract:
Provided herein is a lens composition of an LED device for an LCD having high transparency and high heat resistance, and an LED device, a backlight unit and an LCD comprising the lens composition. The lens composition includes a copolymer represented by the formula 1 and having a weight average molecular weight of about 5,000 to about 500,000: wherein R1 and R2 independently represent a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms or —COOR3 group in which R3 represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, R4 and R5 independently represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, the ratio n/n+m ranges from about 0.3 to about 0.995, and the ratio m/n+m ranges from about 0.005 to about 0.7.
Abstract:
Backlight assembly and the display device using the same are disclosed. Backlight assembly comprises a container and a detector. The container holds a light and electromagnetic field generating source and a sampling portion for passing the light and/or electromagnetic field. The detector is located on the outer space of the container and has an electromagnetic field reactive sensing unit and a body to support the sensing unit. Therefore, the backlight of the present invention can protect lamp from the successive malfunctioning and prevent fire.
Abstract:
A backlight assembly includes a light emitting part, a light guide plate and a lower receiving container. The light guide plate includes a side surface and a light exiting surface. The lower receiving container includes a heat sinking part and a rigid part having a strength greater than the heat sinking part.
Abstract:
Disclosed are a light emitting diode package and a backlight unit having the same. The light emitting diode package includes a light emitting diode including generating a light in response to a driving voltage applied from the outside, first and second main leads connected to first and second electrodes, respectively, and a body section provided therein with the light emitting diode and fixes the first and second main leads thereto. The light emitting diode package includes a first sub-lead having one end portion connected to the first main lead, and a second sub-lead having one end portion connected to the second main lead and an opposite end portion spaced apart from an opposite end portion of the first sub-lead at a predetermined distance while facing the opposite end portion of the first sub-lead. The backlight unit includes a plurality of the light emitting diode packages.
Abstract:
A light source apparatus includes a light source module, a local dimming control part and a light source driving part. The light source module includes a plurality of light-emitting blocks. Each of the light-emitting blocks includes a first color light source, a second color light source and a third color light source, respectively. The local dimming control part drives the light-emitting blocks by blocks. The local dimming control part sets a reference duty signal for first, second and third color driving signals in accordance with a driving mode of the light source module. The light source driving part generates the first color driving signal, the second color driving signal and the third color driving signal by using the reference duty ratio set in accordance with the driving mode and a driving current having a same peak current level in accordance with the driving mode.
Abstract:
A backlighting assembly for an LCD display is divided into a plurality of selective dimming areas each having a respective plurality of light generating blocks. A plurality of driving units supply power to the light generating blocks. The light generating blocks are grouped into light source groups. Each of the driving units supplies power to at least one light generating block in a first light source group and a second light generating block in a second light source group but not to all the light generating blocks in any one light source group. Light generating blocks connected to a same driving unit may be distributedly arranged to be nonadjacent to one another. Plural driving units are used to fully power a brightly lit one dimming area, thereby reducing the loads on the individual driving units and preventing overheating.
Abstract:
A backlight assembly a plurality of first light-emitting chips for emitting light and a thermistor for indicating the temperature of the first light-emitting chips. The first light-emitting chips emit first color light and are connected in series to each other. The thermistor may be connected in series to the first light-emitting chips and has an electrical resistance that decreases with an increase of its temperature. The light amount emitted by the first light-emitting chips is controlled by pulse width modulating the current driving the first light-emitting chips based on the temperature (resistance) of the thermistor and based on received image data. Thus, a decrease in brightness due to temperature variation may be compensated for while performing color dimming.
Abstract:
A backlight assembly includes a plurality of point light source substrates each including a substrate main body, a power supplying line disposed on the substrate main body, and a pad part disposed on the substrate main body and electrically connected to the power supplying line, a point light source disposed on each of the point light source substrates and supplied with power through the power supplying line, and a connecting film connecting adjacent point light source substrates and including a first film main body and a metal pattern disposed on the first film main body and electrically connected with the pad part.
Abstract:
An optical lens includes a recessed part and a refracting part. The recessed part has a substantially circular plan view and a substantially V shaped cross-section. The recessed part forms an angle of no more than an angle of about 20° with respect to a vertical line. The recessed part has a plurality of curved surfaces including different radii so that a light incident into the recessed part is totally reflected from the curved surfaces. The refracting part has a substantially circular plan view extended from the recessed part. A light incident into the refracting part and the reflected light from the recessed part are refracted from the refracting part. Therefore, a luminance uniformity and a color uniformity are improved.
Abstract:
A light module for a backlight assembly that prevents metal wiring from being damaged at a bent portion and a backlight assembly including the same are presented. The light module for the backlight assembly includes: a printed circuit board (PCB) including a first portion and a second portion connected by a connection having a bend; a first light source formed on the first portion of the printed circuit board (PCB); a second light source formed on the second portion of the printed circuit board (PCB); a first wiring connecting member connected to the first light source and formed on the first portion; and a second wiring connecting member connected to the second light source and formed on the second portion, wherein the first wiring connecting member and the second wiring connecting member are connected to each other.