MULTIDIMENSIONAL ELECTROCHEMICALLY ACTIVE STRUCTURES FOR BATTERY ELECTRODES
    31.
    发明申请
    MULTIDIMENSIONAL ELECTROCHEMICALLY ACTIVE STRUCTURES FOR BATTERY ELECTRODES 有权
    用于电池电极的多电子电化学活性结构

    公开(公告)号:US20110287318A1

    公开(公告)日:2011-11-24

    申请号:US13114413

    申请日:2011-05-24

    Abstract: Provided are novel multidimensional electrode structures containing high capacity active materials for use in rechargeable electrochemical cells. These structures include main support structures and multiple nanowires attached to the support structures and extending into different directions away from these supports. The active material may be deposited as a layer (uniform or non-uniform) surrounding the nanowires and, in certain embodiments, the main supports and even substrate. The active material layer may be sufficiently thin to prevent pulverization of the layer at given operating conditions. Interconnections between the electrode structures and/or substrate may be provided by overlaps formed during deposition of the active layer. Silicide-based nano wires structures may be formed on the main supports in a fluidized bed reactor by suspending the metal-containing main supports in a silicon-containing process gas. A layer of silicon may be then deposited over these silicide nanowires.

    Abstract translation: 提供了包含用于可再充电电化学电池的高容量活性材料的新颖的多维电极结构。 这些结构包括主支撑结构和附接到支撑结构并延伸到远离这些支撑的不同方向的多个纳米线。 活性材料可以作为围绕纳米线的层(均匀或不均匀)沉积,并且在某些实施方案中可以沉积在主载体和甚至基底上。 活性材料层可以足够薄以防止在给定操作条件下的层的粉碎。 可以通过在活性层的沉积期间形成的重叠来提供电极结构和/或衬底之间的互连。 可以通过将含金属的主载体悬浮在含硅工艺气体中,在流化床反应器中的主要载体上形成基于硅化物的纳米线结构。 然后可以在这些硅化物纳米线上沉积一层硅。

    OPEN STRUCTURES IN SUBSTRATES FOR ELECTRODES
    32.
    发明申请
    OPEN STRUCTURES IN SUBSTRATES FOR ELECTRODES 有权
    电极基板的开放结构

    公开(公告)号:US20110111296A1

    公开(公告)日:2011-05-12

    申请号:US12944596

    申请日:2010-11-11

    Abstract: Provided are conductive substrates having open structures and fractional void volumes of at least about 25% or, more specifically, or at least about 50% for use in lithium ion batteries. Nanostructured active materials are deposited over such substrates to form battery electrodes. The fractional void volume may help to accommodate swelling of some active materials during cycling. In certain embodiments, overall outer dimensions of the electrode remain substantially the same during cycling, while internal open spaces of the conductive substrate provide space for any volumetric changes in the nanostructured active materials. In specific embodiments, a nanoscale layer of silicon is deposited over a metallic mesh to form a negative electrode. In another embodiment, a conductive substrate is a perforated sheet with multiple openings, such that a nanostructured active material is deposited into the openings but not on the external surfaces of the sheet.

    Abstract translation: 提供了具有至少约25%,或更具体地至少约50%的具有开放结构和分数空隙体积的导电基底,用于锂离子电池。 纳米结构的活性材料沉积在这样的衬底上以形成电池电极。 在循环过程中,分数空隙体积有助于适应一些活性物质的溶胀。 在某些实施例中,电极的整个外部尺寸在循环过程中保持基本相同,而导电衬底的内部开放空间为纳米结构化活性材料中的任何体积变化提供了空间。 在具体实施方案中,将纳米级的硅层沉积在金属网上以形成负电极。 在另一个实施例中,导电衬底是具有多个开口的穿孔片,使得纳米结构的活性材料沉积到开口中而不是在片的外表面上。

    High speed packet switching controller for telephone switching system
    34.
    发明授权
    High speed packet switching controller for telephone switching system 有权
    用于电话交换系统的高速分组交换控制器

    公开(公告)号:US06421341B1

    公开(公告)日:2002-07-16

    申请号:US09173018

    申请日:1998-10-15

    CPC classification number: H04L49/101 H04L2012/5686

    Abstract: This invention relates to a high speed packet switching controller in a telephone switching system which can suitably be applied to a packet controller having large capacity using a neural network chip and maximize the system performance by the optimized switching operation. The high speed packet switching controller comprises a row address decoder for decoding a weight raw address which is inputted thereto, a column address decoder for decoding a weight column address which is inputted thereto, a matrix array for providing the neural network using address signals provided from the row address decoder and column address decoder and outputing varied voltage in accordance with an external weight value, a neural network for producing a final crossbar switching control signal, an external input/output bus for transmitting an output signal of the neural network, and an internal neural data bus for transmitting the address signal output from the row address decoder and column address decoder to the matrix array.

    Abstract translation: 本发明涉及电话交换系统中的高速分组交换控制器,其可以适用于使用神经网络芯片的具有大容量的分组控制器,并且通过优化的切换操作使系统性能最大化。 高速分组交换控制器包括:行地址解码器,用于对输入的加权原始地址进行解码;列地址解码器,用于对输入的加权列地址进行解码;矩阵阵列,用于使用从 行地址解码器和列地址解码器,并根据外部权重值输出变化的电压,用于产生最终交叉开关控制信号的神经网络,用于发送神经网络的输出信号的外部输入/输出总线,以及 用于将从行地址解码器和列地址解码器输出的地址信号发送到矩阵阵列的内部神经数据总线。

    Tin sulfide quantum dots for in vivo near infrared imaging

    公开(公告)号:US10517967B2

    公开(公告)日:2019-12-31

    申请号:US15851782

    申请日:2017-12-22

    Abstract: An aqueous approach to synthesize capped SnS quantum dots (QDs) followed by optional capping molecule extension by attaching one or more extending molecules to the capping molecule via peptide bond formation at elevated temperature. The capped SnS QDs may have a capping molecule:Sn:S molar ratio of 16:3:1 to 16:12:1. A suspension of SnS QDs was heat-treated at 200° C. for 0.5-4 hrs. The obtained SnS QDs showed an NIR emission peak at 820-835 nm with an excitation wavelength at 690 nm. The as synthesized SnS QDs were found to have high positive zeta potential of ˜30 mV and thus were toxic to cells. By neutralizing the SnS QDs the cytotoxicity was reduced to an accepted level. The heat-treatment step can be obviated by adding a glycerol solution containing S2− anions and capping molecule to a glycerol solution of Sn2+ ions.

    CORE-SHELL HIGH CAPACITY NANOWIRES FOR BATTERY ELECTRODES
    37.
    发明申请
    CORE-SHELL HIGH CAPACITY NANOWIRES FOR BATTERY ELECTRODES 审中-公开
    电池电极的核心高容量纳米管

    公开(公告)号:US20140370380A9

    公开(公告)日:2014-12-18

    申请号:US12787168

    申请日:2010-05-25

    Abstract: Provided are nanostructures containing electrochemically active materials, battery electrodes containing these nanostructures for use in electrochemical batteries, such as lithium ion batteries, and methods of forming the nanostructures and battery electrodes. The nanostructures include conductive cores, inner shells containing active materials, and outer shells partially coating the inner shells. The high capacity active materials having a stable capacity of at least about 1000 mAh/g can be used. Some examples include silicon, tin, and/or germanium. The outer shells may be configured to substantially prevent formation of Solid Electrolyte lnterphase (SEI) layers directly on the inner shells. The conductive cores and/or outer shells may include carbon containing materials. The nanostructures are used to form battery electrodes, in which the nanostructures that are in electronic communication with conductive substrates of the electrodes.

    Abstract translation: 提供了含有电化学活性材料的纳米结构体,含有用于电化学电池中的这些纳米结构的电池电极,例如锂离子电池,以及形成纳米结构和电池电极的方法。 纳米结构包括导电芯,含有活性材料的内壳和部分涂覆内壳的外壳。 可以使用具有至少约1000mAh / g的稳定容量的高容量活性材料。 一些实例包括硅,锡和/或锗。 外壳可以构造成基本上防止直接在内壳上形成固体电解质相(SEI)层。 导电芯和/或外壳可以包括含碳材料。 纳米结构用于形成电池电极,其中纳米结构与电极的导电基板电连通。

    Interconnected hollow nanostructures containing high capacity active materials for use in rechargeable batteries
    39.
    发明授权
    Interconnected hollow nanostructures containing high capacity active materials for use in rechargeable batteries 有权
    包含用于可充电电池的高容量活性材料的互连中空纳米结构

    公开(公告)号:US08450012B2

    公开(公告)日:2013-05-28

    申请号:US12787138

    申请日:2010-05-25

    Abstract: Provided are electrode layers for use in rechargeable batteries, such as lithium ion batteries, and related fabrication techniques. These electrode layers have interconnected hollow nanostructures that contain high capacity electrochemically active materials, such as silicon, tin, and germanium. In certain embodiments, a fabrication technique involves forming a nanoscale coating around multiple template structures and at least partially removing and/or shrinking these structures to form hollow cavities. These cavities provide space for the active materials of the nanostructures to swell into during battery cycling. This design helps to reduce the risk of pulverization and to maintain electrical contacts among the nanostructures. It also provides a very high surface area available ionic communication with the electrolyte. The nanostructures have nanoscale shells but may be substantially larger in other dimensions. Nanostructures can be interconnected during forming the nanoscale coating, when the coating formed around two nearby template structures overlap.

    Abstract translation: 提供了用于可再充电电池的电极层,例如锂离子电池以及相关制造技术。 这些电极层具有互连的中空纳米结构,其包含高容量的电化学活性材料,例如硅,锡和锗。 在某些实施例中,制造技术包括围绕多个模板结构形成纳米级涂层,并且至少部分地去除和/或收缩这些结构以形成中空腔。 这些空穴为纳米结构的活性材料在电池循环过程中提供空间。 该设计有助于降低粉碎的风险并保持纳米结构之间的电接触。 它还提供了与电解质的非常高的表面积可用的离子连通。 纳米结构具有纳米尺寸的壳,但在其它尺寸上可能显着更大。 当形成纳米尺度涂层时,当围绕两个附近的模板结构形成的涂层重叠时,纳米结构可以相互连接。

Patent Agency Ranking