Abstract:
Provided herein are novel template electrode materials and structures for lithium ion cells. Related methods are also provided. According to various embodiments, an electrode can include a nanostructured template, an electrochemically active material layer coating the template, and a first intermediate layer between the nanostructured template and the electrochemically active material layer. In one arrangement, the nanostructured template includes silicide nanowires. The electrochemically active material may be any of silicon, tin, germanium, carbon, metal hydrides, silicides, phosphides, and nitrides. The first intermediate layer may facilitate adhesion between the nanostructured template and the electrochemically active material layer, electronic conductivity within the electrode, and/or stress relaxation between the nanostructured template and the electrochemically active material layer.
Abstract:
An aqueous approach to synthesize capped SnS quantum dots (QDs) followed by optional capping molecule extension by attaching one or more extending molecules to the capping molecule via peptide bond formation at elevated temperature. The capped SnS QDs may have a capping molecule:Sn:S molar ratio of 16:3:1 to 16:12:1. A suspension of SnS QDs was heat-treated at 200° C. for 0.5-4 hrs. The obtained SnS QDs showed an NIR emission peak at 820-835 nm with an excitation wavelength at 690 nm. The as synthesized SnS QDs were found to have high positive zeta potential of ˜30 mV and thus were toxic to cells. By neutralizing the SnS QDs the cytotoxicity was reduced to an accepted level. The heat-treatment step can be obviated by adding a glycerol solution containing S2− anions and capping molecule to a glycerol solution of Sn2+ ions.
Abstract:
A communication method operates to seamlessly transmit internet protocol (IP) data frames, such as IPv6 data frames, over a communication network that uses a non-IP network routing protocol, i.e., a communication network that implements a network routing protocol other than, or that is incompatible with an IP network routing protocol, such as the WirelessHART protocol. This communication method enables, for example, field devices or other intelligent devices within a process plant network that uses a non-IP communication network to perform messaging of IP data frames generated at or to be received by internet protocol enabled devices either within the process plant network or outside of the process plant network.
Abstract:
Provided are examples of electrochemically active electrode materials, electrodes using such materials, and methods of manufacturing such electrodes. Electrochemically active electrode materials may include a high surface area template containing a metal silicide and a layer of high capacity active material deposited over the template. The template may serve as a mechanical support for the active material and/or an electrical conductor between the active material and, for example, a substrate. Due to the high surface area of the template, even a thin layer of the active material can provide sufficient active material loading and corresponding battery capacity. As such, a thickness of the layer may be maintained below the fracture threshold of the active material used and preserve its structural integrity during battery cycling.
Abstract:
Provided are examples of electrochemically active electrode materials, electrodes using such materials, and methods of manufacturing such electrodes. Electrochemically active electrode materials may include a high surface area template containing a metal silicide and a layer of high capacity active material deposited over the template. The template may serve as a mechanical support for the active material and/or an electrical conductor between the active material and, for example, a substrate. Due to the high surface area of the template, even a thin layer of the active material can provide sufficient active material loading and corresponding battery capacity. As such, a thickness of the layer may be maintained below the fracture threshold of the active material used and preserve its structural integrity during battery cycling.
Abstract:
A lithium ion battery electrode includes silicon nanowires used for insertion of lithium ions and including a conductivity enhancement, the nanowires growth-rooted to the conductive substrate.
Abstract:
Provided are battery electrode structures that maintain high mass loadings (i.e., large amounts per unit area) of high capacity active materials in the electrodes without deteriorating their cycling performance. These mass loading levels correspond to capacities per electrode unit area that are suitable for commercial electrodes even though the active materials are kept thin and generally below their fracture limits. A battery electrode structure may include multiple template layers. An initial template layer may include nanostructures attached to a substrate and have a controlled density. This initial layer may be formed using a controlled thickness source material layer provided, for example, on a substantially inert substrate. Additional one or more template layers are then formed over the initial layer resulting in a multilayer template structure with specific characteristics, such as a surface area, thickness, and porosity. The multilayer template structure is then coated with a high capacity active material.
Abstract:
Electrochemical cells containing nanostructured negative active materials and composite positive active materials and methods of fabricating such electrochemical cells are provided. Positive active materials may have inactive components and active components. Inactive components may be activated and release additional lithium ions, which may offset some irreversible capacity losses in the electrochemical cells. In certain embodiments, the activation releases lithium ion having a columbic content of at least about 400 mAh/g based on the weight of the activated material.
Abstract:
Provided are electrode layers for use in rechargeable batteries, such as lithium ion batteries, and related fabrication techniques. These electrode layers have interconnected hollow nanostructures that contain high capacity electrochemically active materials, such as silicon, tin, and germanium. In certain embodiments, a fabrication technique involves forming a nanoscale coating around multiple template structures and at least partially removing and/or shrinking these structures to form hollow cavities. These cavities provide space for the active materials of the nanostructures to swell into during battery cycling. This design helps to reduce the risk of pulverization and to maintain electrical contacts among the nanostructures. It also provides a very high surface area available ionic communication with the electrolyte. The nanostructures have nanoscale shells but may be substantially larger in other dimensions. Nanostructures can be interconnected during forming the nanoscale coating, when the coating formed around two nearby template structures overlap.
Abstract:
There is provided a direct memory access apparatus and a direct memory access method.The direct memory access apparatus of the present invention comprises: a variable transmission rule map unit for setting a transmission rule with a variable block length and a variable block interval as a unit of memory transmission rule; a direct memory access unit for sending data line of the variable block length and the variable block interval, in case of access to the unit of memory by using the unit of memory transmission rule determined by the variable transmission rule map unit; and an interface unit for retrieving the unit of memory transmission rule, which is necessary for sending the data line of the variable block length and the variable block interval, from the variable transmission rule map unit and sending the unit of memory transmission rule to the direct memory access unit.