Abstract:
The subject invention identifies CC chemokine ligand 20 (CCL20) as a novel biomarker for diagnosis of traumatic brain injury and/or neurodegeneration in the brain. The subject invention also provides treatment methods for traumatic brain injury and/or neurodegeneration in the brain by modulating systemic and/or brain-specific CCL20-CCR6 signaling. Also provided are uses of CCL20-CCR6 signaling a target for screening for therapeutic agents that are useful for treatment of traumatic brain injury.
Abstract:
The compositions and methods of the disclosure particularly target the divalent metal transporter expressed on olfactory nerve terminals to transport divalent cation-coated or cation-containing nanoparticles to all regions of brain. It has been found that such divalent cation-containing nanoparticles, including those nanoparticles comprising manganese have affinity for the metal transport receptor proteins. Although this receptor has particular affinity for manganese, it is contemplated that other divalent ions, including magnesium, calcium, and the like may also be bound to such receptors leading to transport of the nanoparticles into the intracellular cytoplasm. Nanoparticles have been developed, therefore, as vehicles for parenteral delivery of genes, proteins and drugs. The present disclosure encompasses embodiments of nanoparticle-based compositions and methods for the use thereof for the delivery of genes, oligonucleotides, including but not limited to small interfering RNA, and other small molecule drugs, into the brain by nasal insufflation.
Abstract:
A treatment for prostate cancer using cyclin-dependent kinase inhibitors is provided. The effects of cyclin-dependent kinase inhibitors on the survival of prostate cancer cells was examined. Roscovitine, R-roscovitine, and CGP74514A were shown to induce the apoptosis of LNCaP and LNCaP-Rf cells, both of which express wild-type p53. The cyclin-dependent kinase inhibitors of the present invention induce the mitochondria-mediated apoptosis of prostate cancer cells by a dual mechanism: p53 accumulation and XIAP depletion.
Abstract:
The present invention concerns molecularly imprinted polymers (MIPs) having an affinity for natriuretic peptides, such as atrial natriuretic peptide (ANP). In some embodiments, the MIP is a nanoparticle (a molecularly imprinted polymeric nanoparticle (MIPNP)). Other aspects of the invention include methods of preparing an MIP having affinity for a natriuretic peptide, methods for binding a natriuretic peptide in vitro or in vivo using an MIP of the invention, methods for interfering with the binding of a natriuretic peptide with its receptor in vivo, methods for reducing inflammation, cell growth, cell differentiation, or a cell proliferation disorder, methods for detecting natriuretic peptides, and devices and kits for sequestering and/or detecting natriuretic peptides.
Abstract:
Provided herein is a micelle composition comprising a polyethylene glycol (PEG), a DC-cholesterol, and a dioleoylphosphatidyl-ethanolamine (DOPE) and either or both a pharmaceutical compound core and a polynucleotide coating. Also provided herein is a method of administering one or more compounds to a cell comprising administering to the cell a micelle composition comprising 1) PEG-PE, a DC-cholesterol, and DOPE, and 2) the one or more compounds, wherein the compounds are selected from the group consisting of a polynucleotide and a pharmaceutical composition. Further provided are methods for detecting the micelle composition.
Abstract:
Provided herein is a method of transfecting a brain cell of a subject with a polynucleotide comprising systemically administering to the subject a composition comprising a micelle having a hydrophobic superparamagnetic iron oxide nanoparticle (SPION) core, a first coating comprising a cationic polymer, and a second coating comprising the polynucleotide, wherein the subject has a mild traumatic brain injury.
Abstract:
Provided herein is a three-dimensional scaffold composition comprising randomly oriented fibers, wherein the fibers comprise a polyethylene glycol-polylactic acid block copolymer (PEG-PLA) and a poly(lactic-co-glycolic acid) (PLGA). Also provided are methods for using the three-dimensional scaffolds described herein.