Abstract:
A crystal puller for growing a crystal ingot includes a housing, insulation, a crucible assembly, a heat shield, and a dust barrier. The housing encloses a growth chamber, and has an upper wall with an inner surface and an aperture. The insulation separates an inside of the housing into an upper area and a lower area, and has a central opening. The crucible assembly is within the lower area to contain the melt. The heat shield is adjacent the central opening of the insulation, and forms a labyrinth gas path with the crucible assembly. The dust barrier extends from the inner surface of the upper wall to one of the insulation and the heat shield, and forms a seal with the upper wall around the aperture to inhibit particles from entering the growth chamber through the upper area of the housing.
Abstract:
A method for growing a crystal ingot from a melt in a crystal growing system is provided. The system includes a crucible and a barrier disposed within the crucible. The method includes identifying a Peclet number (Pe) with an advective transport rate that is less than a diffusive transport rate, calculating a cross-sectional area of a passage to be formed in the barrier based on the identified Peclet number to allow outward diffusion of impurities through the passage during growth of the crystal ingot, and growing the crystal ingot using the barrier having the passage formed therein.
Abstract:
A system for growing a crystal ingot from a melt is provided. The system includes a first crucible, a barrier, and a shield. The first crucible has a first base and a first sidewall forming a first cavity for containing the melt. The barrier is disposed within the first cavity of the first crucible to inhibit movement of the melt from outward of the barrier to inward of the barrier. The barrier extends from the first base to above the melt. The barrier has an inner arm and an outer arm extending upward to form a channel therebetween. The shield extends downward between the inner arm and the outer arm to inhibit passage of contaminants.
Abstract:
A solar power system and a solar energy chasing method. Errors may be corrected in the installation area of a solar energy collecting plate with solar cells, particularly, in the installation direction thereof. Therefore, a control angle may be operated and determined, so that the solar cells or the solar energy collecting plate may be rotated precisely in the desired direction. In the case of disposing a plurality of solar energy collecting plates, the solar energy collecting plates may be controlled according to a predetermined rotation angle, thereby increasing solar energy absorbing efficiency.
Abstract:
In one example, a method of monitoring a photovoltaic (PV) system located at a first location includes receiving, by a gateway device at the first location, data concerning a plurality of components of the PV system, determining, by the gateway device, if the received data satisfies at least one alert condition, and transmitting, by the gateway device, an alert notification to a computing device located at a second location when the received data satisfies at least one alert condition.
Abstract:
A method and data-logging system are provided. The system includes a map-ahead thread configured to acquire blocks of private memory for storing data to be logged, the blocks of private memory being twice as large as the file page size, a master thread configured to write data to the blocks of private memory, in real-time and in full resolution, the data acquired during operation of a machine generating the data and written to the blocks of private memory in real-time, the machine including a controller including a processor communicatively coupled to a memory having processor instructions therein, and a write-behind thread configured to acquire pages of memory that are mapped to pages in a file, copy the data from the blocks of private memory to the acquired file-mapped blocks of memory.
Abstract:
A method of preparing a monocrystalline donor substrate, the method comprising (a) implanting helium ions through the front surface of the monocrystalline donor substrate to an average depth D1 as measured from the front surface toward the central plane; (b) implanting hydrogen ions through the front surface of the monocrystalline donor substrate to an average depth D2 as measured from the front surface toward the central plane; and (c) annealing the monocrystalline donor substrate at a temperature sufficient to form a cleave plane in the monocrystalline donor substrate. The average depth D1 and the average depth D2 are within about 1000 angstroms.
Abstract:
Apparatus for use in preparing heterostructures having a reduced concentration of defects including apparatus for stressing semiconductor substrates to allow them to conform to a crystal having a different crystal lattice constant.
Abstract:
A system for growing a crystal ingot includes a crucible and a weir. The crucible has a base and a sidewall for the containment of a silicon melt therein. The weir is located along the base of the crucible inward from the sidewall of the crucible. The weir has a body connected with at least a pair of legs disposed to inhibit movement of the silicon melt therebetween.
Abstract:
A system for growing silicon crystal structures includes a housing defining a growth chamber and a feed system connected to the housing for delivering silicon particles to the growth chamber. The feed system includes a container for holding the silicon particles. The container includes an outlet for discharging the silicon particles. The feed system also includes a channel connected to the outlet such that silicon particles discharged from the container flow through the channel. The feed system further includes a separation valve connected to the channel and to the housing. The separation valve is configured such that a portion of the feed system rotates relative to the housing.