Abstract:
A xylene isomerization process includes introducing gas comprising hydrogen and a base to a reaction zone in which a catalyst comprising a Group VIII metal and a zeolite support resides. In one embodiment, the base may be formed in situ within the reaction zone from nitrogen and hydrogen that are introduced to the reaction zone. In another embodiment, the base is introduced directly to the reaction zone. The conditions in the reaction zone are effective to reduce the catalyst. A stream comprising C8 aromatics, e.g., xylenes and ethylbenzene may then be fed to the reaction zone containing the reduced catalyst. The reaction zone may be operated at conditions effective to isomerize the xylenes and hydrodealkylate the ethylbenzene. The xylene loss during the isomerization of the xylenes is lowered as a result of using the catalyst reduced in the presence of the gas comprising a base and hydrogen.
Abstract:
A method for producing a selective hydrogenation catalyst for hydrogenating a highly unsaturated hydrocarbon to an unsaturated hydrocarbon comprising contacting an inorganic catalyst support with a chlorine-containing compound to form a chlorided catalyst support and adding palladium to the chlorided catalyst support to form a supported-palladium composition. A selective hydrogenation catalyst for hydrogenating a highly unsaturated hydrocarbon to an unsaturated hydrocarbon formed by the method comprising contacting an inorganic catalyst support with a chlorine-containing compound to form a chlorided catalyst support and adding palladium to the chlorided catalyst support to form a supported-palladium composition. A method of selectively hydrogenating a highly unsaturated hydrocarbon to an unsaturated hydrocarbon comprising contacting the highly unsaturated hydrocarbon with a selective hydrogenation catalyst composition produced by contacting an inorganic catalyst support with a chlorine-containing compound to form a chlorided catalyst support and adding palladium to the chlorided catalyst support to form a supported-palladium composition.
Abstract:
A catalyst composition comprising palladium, silver and a support material (preferably alumina) is contacted with a liquid composition comprising an iodide component such as ammonium iodide, and the catalyst is then calcined. An improved process for hydrogenation, especially selectively hydrogenating acetylene (to ethylene), using this improved catalyst composition with improved conversion and deactivation.
Abstract:
A solid combination of elemental sulfur and an inorganic support material prepared in an inert atmosphere to provide a composition for absorbing trialkyl arsines. The composition prepared thereby and the method for absorbing trialkyl arsines using the composition.
Abstract:
A catalyst composition containing a zeolite and platinum, and a method of preparing such catalyst composition, are disclosed. The thus-obtained catalyst composition is employed in the conversion of a hydrocarbon to aromatics.
Abstract:
A process of making a metal aluminate catalyst support by incorporating, preferably impregnating, alumina, preferably gamma alumina, with a metal component to thereby provide a metal-incorporated alumina which is then calcined under a calcining condition to thereby provide a metal aluminate catalyst support. Such calcining condition includes a temperature in the range of from about 600° C. to about 1350° C. Preferably the metal component has been melted under a melting condition to thereby provide a melted metal component.
Abstract:
A method for producing a selective hydrogenation catalyst for hydrogenating a highly unsaturated hydrocarbon to an unsaturated hydrocarbon comprising contacting an inorganic catalyst support with a chlorine-containing compound to form a chlorided catalyst support and adding palladium to the chlorided catalyst support to form a supported-palladium composition. A selective hydrogenation catalyst for hydrogenating a highly unsaturated hydrocarbon to an unsaturated hydrocarbon formed by the method comprising contacting an inorganic catalyst support with a chlorine-containing compound to form a chlorided catalyst support and adding palladium to the chlorided catalyst support to form a supported-palladium composition. A method of selectively hydrogenating a highly unsaturated hydrocarbon to an unsaturated hydrocarbon comprising contacting the highly unsaturated hydrocarbon with a selective hydrogenation catalyst composition produced by contacting an inorganic catalyst support with a chlorine-containing compound to form a chlorided catalyst support and adding palladium to the chlorided catalyst support to form a supported-palladium composition.
Abstract:
Methods and systems for improved catalytic reforming are disclosed. A method of catalytic reforming includes feeding a feedstream comprising C6-convertibles to one or more reactors; contacting the feedstream with a reforming catalyst; selecting values for a LHSV, a H2/HC ratio, and a conversion of C6-convertibles from a deactivation kinetic model so as to maximize a net present amount of benzene produced over a run-length of the reforming catalyst; operating the one or more reactors at the selected LHSV, the selected H2/HC ratio, and the selected conversion of C6-convertibles; and recovering an effluent from the reactor, wherein the effluent comprises at least about 40 wt % benzene.
Abstract:
A hydrocarbon aromatization process comprising adding a nitrogenate, an oxygenate, or both to a hydrocarbon stream to produce an enhanced hydrocarbon stream, and contacting the enhanced hydrocarbon stream with an aromatization catalyst, thereby producing an aromatization reactor effluent comprising aromatic hydrocarbons, wherein the catalyst comprises a non-acidic zeolite support, a group VIII metal, and one or more halides. Also disclosed is a hydrocarbon aromatization process comprising monitoring the presence of an oxygenate, a nitrogenate, or both in an aromatization reactor, monitoring at least one process parameter that indicates the activity of the aromatization catalyst, modifying the amount of the oxygenate, the nitrogenate, or both in the aromatization reactor, thereby affecting the parameter.
Abstract:
A method of removing a metal protective layer from a surface of a reactor component comprising treating the metal protective layer with one or more chemical removal agents to remove at least a portion of the metal protective layer from the reactor component. A method of removing a metal protective layer from a surface of a reactor component comprising treating the metal protective layer to remove the metal protective layer from the reactor component, and determining a thickness of the reactor component following treatment.