Abstract:
The invention provides a coaxial cable including an internal insulating layer formed on an outer periphery of an electric conductor, a conductive layer formed on an outer periphery of the internal insulating layer, and an external insulating layer formed on an outer periphery of the conductive layer. The conductive layer is made of a metal nanoparticle paste sintered body obtained by sintering metal nanoparticles by irradiation of light toward a metal nanoparticles paste.
Abstract:
An insulated wire includes a conductor, and an insulating covering layer formed on a periphery of the conductor and including two or more insulating coatings. The insulating coatings include a polyamide-imide resin insulating material represented by chemical formula 1: where R indicates a divalent aromatic diamine including three or more aromatic rings. The insulating coatings are formed by applying and baking the polyamide-imide resin insulating material, and the polyamide-imide resin insulating material is obtained by reacting an imide group containing dicarboxylic acid with a diisocyanate, the imide group containing dicarboxylic acid being obtained by dehydration reaction of a diamine comprising a divalent aromatic diamine including three or more aromatic rings with an acid using an azeotropic solvent.
Abstract:
A hydrated water-absorption polymer containing resin composition includes a liquid cross-link curable resin composition, and a water-absorption polymer dispersed in the liquid cross-link curable resin composition. The water-absorption polymer is preliminarily hydrated and swollen. The water-absorption polymer before being hydrated and swollen includes an average particle diameter of not more than 10 μm. The water-absorption polymer includes an amount of water absorption of 10 to 100 g/g.
Abstract:
A coaxial cable includes an electric conductor, an insulating layer formed on a periphery of the electric conductor, wherein the insulating layer includes an insulating material including a fluorine-containing polymer obtained by grafting at least one compound selected from unsaturated carboxylic acids and esters of the unsaturated carboxylic acids to a tetrafluoroethylene-perfluoroalkylvinylether copolymer, a conductive layer formed on a periphery of the insulating layer, wherein the conductive layer includes a sintered product from a metallic nanoparticle paste, and an outer insulating layer formed on a periphery of the conductive layer.
Abstract:
A hydrous water absorbent polymer dispersed ultraviolet curable resin composition includes an ultraviolet curable resin composition, and a hydrous water absorbent polymer swollen by water beforehand, and dispersed in the ultraviolet curable resin composition so that the hydrous water absorbent polymer dispersed ultraviolet curable resin composition has a moisture content of not less than 50 percent. The water absorption rate of the ultraviolet curable resin composition is not more than 2 percent.
Abstract:
A thermoplastic resin composition including a polyphenylene ether-based polymer having hydroxyl groups in its chemical structure and having 2,6-dimethylphenylene ether as a repeating unit, an isocyanate compound having a plurality of isocyanate groups in its structure; or a reaction product of the polyphenylene ether-based polymer having 2,6-dimethylphenylene ether as a repeating unit and the isocyanate compound having a plurality of isocyanate groups in its structure; and a hydrogenated styrene-based elastomer, and an adhesive film and a wiring film using the same are disclosed.
Abstract:
A metal fine particle for a conductive metal paste includes a protective agent covering a surface of the metal fine particle. An amount of heat generated per unit mass (g) of the metal fine particle is not less than 500 J at a temperature of an external heat source temperature in a range of 200° C. to 300° C. when being calcined by the external heat source. The protective agent includes at least one selected from the group consisting of dipropylamine, dibutylamine, triethylamine, tripropylamine, tributylamine, butanethiol, pentanethiol, hexanethiol, heptanethiol, octanethiol, nonanethiol, decanethiol, undecanethiol and dodecanethiol. The content of the protective agent is in a range of 0.1 to 20% by mass with respect to the mass of the metal fine particle.
Abstract:
There is provided a producing method of metal fine particles or metal oxide fine particles for producing metal fine particles or metal oxide fine particles by atomizing raw materials by performing processes including an oxidizing process and a reducing process to the raw materials composed of metal or a metal compound.
Abstract:
An insulated wire includes a conductor, and an insulating covering layer formed on a periphery of the conductor and including two or more insulating coatings. The insulating coatings include a polyamide-imide resin insulating material represented by chemical formula 1: where R indicates a divalent aromatic diamine including three or more aromatic rings. The insulating coatings are formed by applying and baking the polyamide-imide resin insulating material, and the polyamide-imide resin insulating material is obtained by reacting an imide group containing dicarboxylic acid with a diisocyanate, the imide group containing dicarboxylic acid being obtained by dehydration reaction of a diamine comprising a divalent aromatic diamine including three or more aromatic rings with an acid using an azeotropic solvent.
Abstract:
An insulated electric wire is composed of a conductor, and a lubricating layer containing a lubricant. The lubricating layer is formed around the perimeter of the conductor. The lubricating layer is not less than 0.06 and not more than 0.12 in an absorbance ratio A1/A2 expressed by an absorbance A1 of carbon-hydrogen stretching vibration and an absorbance A2 of benzene ring framework vibration, obtained by Fourier Transform Infrared Spectroscopy analysis of a surface of the lubricating layer.