CHARGER AND POWER DELIVERY CONTROL CHIP AND CHARGING METHOD THEREOF

    公开(公告)号:US20180062400A1

    公开(公告)日:2018-03-01

    申请号:US15488525

    申请日:2017-04-17

    Inventor: Tze-Shiang Wang

    CPC classification number: H02J7/045 H02J2007/0096

    Abstract: A charger and a power delivery control chip and a charging method thereof are provided. Resistance values of equivalent resistances corresponding to a power supply bus are calculated according to a charging current and voltage sensing signals respectively provided by chips of a first connector and a second connector. A charging voltage supplied to the power supply bus is adjusted according to a target charging voltage, a current charging current, and variations of the resistance values of the equivalent resistances corresponding to the power supply bus.

    Search method, search system, and natural language comprehension system

    公开(公告)号:US09646000B2

    公开(公告)日:2017-05-09

    申请号:US14144557

    申请日:2013-12-31

    Abstract: A search method, a search system, and a natural language comprehension system are provided. The search system includes a structured database and a search engine. The structured database stores a plurality of records, each of which has a title field and a content field. The title field includes at least one sub-field, and each sub-field includes an indication field and a value field. The indication field stores indication data, the value field stores value data, and the content field stores detailed content data. The search engine conducts a full-text search to the records in the structured database according to a keyword derived from a user's request formation, and a search result is transmitted to a knowledge comprehension assistance module, so as to recognize the user's intention. After the user's intention is recognized, information associated with the recognized user's intention is transmitted back to the user.

    EVENT-BASED APPARATUS AND METHOD FOR SECURING BIOS IN A TRUSTED COMPUTING SYSTEM DURING EXECUTION

    公开(公告)号:US20170098081A1

    公开(公告)日:2017-04-06

    申请号:US15380762

    申请日:2016-12-15

    Inventor: G. Glenn HENRY

    Abstract: An apparatus is provided for protecting a basic input/output system (BIOS) in a computing system. The apparatus includes a BIOS read only memory (ROM), an event detector, and a tamper detector. The BIOS ROM has BIOS contents that are stored as plaintext, and an encrypted message digest, where the encrypted message digest comprises an encrypted version of a first message digest that corresponds to the BIOS contents, and where and the encrypted version is generated via a symmetric key algorithm and a key. The event detector is configured to generate a BIOS check interrupt that interrupts normal operation of the computing system upon the occurrence of an event, where the event includes one or more occurrences of an APIC access. The tamper detector is operatively coupled to the BIOS ROM and is configured to access the BIOS contents and the encrypted message digest upon assertion of the BIOS check interrupt, and is configured to direct a microprocessor to generate a second message digest corresponding to the BIOS contents and a decrypted message digest corresponding to the encrypted message digest using the symmetric key algorithm and the key, and is configured to compare the second message digest with the decrypted message digest, and configured to preclude the operation of the microprocessor if the second message digest and the decrypted message digest are not equal. The microprocessor includes a dedicated crypto/hash unit disposed within execution logic, where the crypto/hash unit generates the second message digest and the decrypted message digest, and where the key is exclusively accessed by the crypto/hash unit. The microprocessor further has a random number generator disposed within the execution logic, where the random number generator generates a random number at completion of a current BIOS check, which is employed by the event detector to randomly set a number of occurrences of the event that are to occur before a following BIOS check.

    EVENT-BASED APPARATUS AND METHOD FOR SECURING BIOS IN A TRUSTED COMPUTING SYSTEM DURING EXECUTION

    公开(公告)号:US20170098079A1

    公开(公告)日:2017-04-06

    申请号:US15380661

    申请日:2016-12-15

    Inventor: G. GLENN HENRY

    Abstract: An apparatus is provided for protecting a basic input/output system (BIOS) in a computing system. The apparatus includes a BIOS read only memory (ROM), an event detector, and a tamper detector. The BIOS ROM has BIOS contents that are stored as plaintext, and an encrypted message digest, where the encrypted message digest comprises an encrypted version of a first message digest that corresponds to the BIOS contents, and where and the encrypted version is generated via a symmetric key algorithm and a key. The event detector is configured to generate a BIOS check interrupt that interrupts normal operation of the computing system upon the occurrence of an event, where the event includes one or more occurrences of an operating system call. The tamper detector is operatively coupled to the BIOS ROM and is configured to access the BIOS contents and the encrypted message digest upon assertion of the BIOS check interrupt, and is configured to direct a microprocessor to generate a second message digest corresponding to the BIOS contents and a decrypted message digest corresponding to the encrypted message digest using the symmetric key algorithm and the key, and is configured to compare the second message digest with the decrypted message digest, and configured to preclude the operation of the microprocessor if the second message digest and the decrypted message digest are not equal. The microprocessor includes a dedicated crypto/hash unit disposed within execution logic, where the crypto/hash unit generates the second message digest and the decrypted message digest, and where the key is exclusively accessed by the crypto/hash unit. The microprocessor further has a random number generator disposed within the execution logic, where the random number generator generates a random number at completion of a current BIOS check, which is employed by the event detector to randomly set a number of occurrences of the event that are to occur before a following BIOS check.

    EVENT-BASED APPARATUS AND METHOD FOR SECURING BIOS IN A TRUSTED COMPUTING SYSTEM DURING EXECUTION

    公开(公告)号:US20170098078A1

    公开(公告)日:2017-04-06

    申请号:US15380063

    申请日:2016-12-15

    Inventor: G. GLENN HENRY

    Abstract: An apparatus is provided for protecting a basic input/output system (BIOS) in a computing system. The apparatus includes a BIOS read only memory (ROM), an event detector, and a tamper detector. The BIOS ROM has BIOS contents that are stored as plaintext, and an encrypted message digest, where the encrypted message digest comprises an encrypted version of a first message digest that corresponds to the BIOS contents, and where and the encrypted version is generated via a symmetric key algorithm and a key. The event detector is configured to generate a BIOS check interrupt that interrupts normal operation of the computing system upon the occurrence of an event, where the event includes one or more occurrences of a PCI Express access. The tamper detector is operatively coupled to the BIOS ROM and is configured to access the BIOS contents and the encrypted message digest upon assertion of the BIOS check interrupt, and is configured to direct a microprocessor to generate a second message digest corresponding to the BIOS contents and a decrypted message digest corresponding to the encrypted message digest using the symmetric key algorithm and the key, and is configured to compare the second message digest with the decrypted message digest, and configured to preclude the operation of the microprocessor if the second message digest and the decrypted message digest are not equal. The microprocessor includes a dedicated crypto/hash unit disposed within execution logic, where the crypto/hash unit generates the second message digest and the decrypted message digest, and where the key is exclusively accessed by the crypto/hash unit. The microprocessor further has a random number generator disposed within the execution logic, where the random number generator generates a random number at completion of a current BIOS check, which is employed by the event detector to randomly set a number of occurrences of the event that are to occur before a following BIOS check.

    EVENT-BASED APPARATUS AND METHOD FOR SECURING BIOS IN A TRUSTED COMPUTING SYSTEM DURING EXECUTION

    公开(公告)号:US20170098077A1

    公开(公告)日:2017-04-06

    申请号:US15380015

    申请日:2016-12-15

    Inventor: G. GLENN HENRY

    Abstract: An apparatus is provided for protecting a basic input/output system (BIOS) in a computing system. The apparatus includes a BIOS read only memory (ROM), an event detector, and a tamper detector. The BIOS ROM has BIOS contents that are stored as plaintext, and an encrypted message digest, where the encrypted message digest comprises an encrypted version of a first message digest that corresponds to the BIOS contents, and where and the encrypted version is generated via a symmetric key algorithm and a key. The event detector is configured to generate a BIOS check interrupt that interrupts normal operation of the computing system upon the occurrence of an event, where the event includes one or more occurrences of a change in virtual memory mapping. The tamper detector is operatively coupled to the BIOS ROM and is configured to access the BIOS contents and the encrypted message digest upon assertion of the BIOS check interrupt, and is configured to direct a microprocessor to generate a second message digest corresponding to the BIOS contents and a decrypted message digest corresponding to the encrypted message digest using the symmetric key algorithm and the key, and is configured to compare the second message digest with the decrypted message digest, and configured to preclude the operation of the microprocessor if the second message digest and the decrypted message digest are not equal. The microprocessor includes a dedicated crypto/hash unit disposed within execution logic, where the crypto/hash unit generates the second message digest and the decrypted message digest, and where the key is exclusively accessed by the crypto/hash unit. The microprocessor further has a random number generator disposed within the execution logic, where the random number generator generates a random number at completion of a current BIOS check, which is employed by the event detector to randomly set a number of occurrences of the event that are to occur before a following BIOS check.

Patent Agency Ranking