Abstract:
A shock absorbing shoe with a triangle shock absorbing space, the shoe having an outsole and a midsole, wherein the midsole is divided into upper and lower midsoles, a plurality of upper seating holes provided on opposite sides of the upper midsole behind an area corresponding to an arch region of a foot sole, a plurality of lower seating holes provided on opposite sides of the lower midsole. The shoe includes a shock absorbing means having a body member formed longitudinally between the upper and lower midsoles, and wing members provided on opposite sides of the body member. Each wing member includes an upper inclined portion inclined upwards to be received in the associated upper seating hole, a lower inclined portion inclined downwards to be received in the associated lower seating hole, and a connecting portion connecting the upper and lower inclined portions.
Abstract:
Phase change memory devices can have bottom patterns on a substrate. Line-shaped or L-shaped bottom electrodes can be formed in contact with respective bottom patterns on a substrate and to have top surfaces defined by dimensions in x and y axes directions on the substrate. The dimension along the x-axis of the top surface of the bottom electrodes has less width than a resolution limit of a photolithography process used to fabricate the phase change memory device. Phase change patterns can be formed in contact with the top surface of the bottom electrodes to have a greater width than each of the dimensions in the x and y axes directions of the top surface of the bottom electrodes and top electrodes can be formed on the phase change patterns, wherein the line shape or the L shape represents a sectional line shape or a sectional L shape of the bottom electrodes in the x-axis direction.
Abstract:
A nonvolatile memory cell includes first and second electrodes and a data storage layer extending between the first and second electrodes. An oxygen diffusion barrier layer is provided, which extends between the data storage layer and the first electrode. An oxygen gettering layer is also provided, which extends between the oxygen diffusion barrier layer and the data storage layer. The oxygen diffusion barrier layer includes aluminum oxide, the oxygen gettering layer includes titanium, the data storage layer includes a metal oxide, such as magnesium oxide, and at least one of the first and second electrodes includes a material selected from a group consisting of tungsten, polysilicon, aluminum, titanium nitride silicide and conductive nitrides.
Abstract:
A nonvolatile memory cell includes a substrate and a phase changeable pattern configured to retain a state of the memory cell, on the substrate. An electrically insulating layer is provided, which contains a first electrode therein in contact with the phase changeable pattern. The first electrode has at least one of an L-shape when viewed in cross section and an arcuate shape when viewed from a plan perspective. A lower portion of the first electrode may be ring-shaped when viewed from the plan perspective. The lower portion of the first electrode may also have a U-shaped cross-section. An upper portion of the first electrode may also have an arcuate shape that spans more than 180° of a circular arc.
Abstract:
A phase changeable memory unit includes a lower electrode, an insulating interlayer structure having an opening, a phase changeable material layer and an upper electrode. The lower electrode is formed on a substrate. The insulating interlayer structure has an opening and is formed on the lower electrode and the substrate. The opening exposes the lower electrode and has a width gradually decreasing downward. The phase changeable material layer fills the opening and partially covers an upper face of the insulating interlayer structure. The upper electrode is formed on the phase changeable material layer.
Abstract:
A phase-change material layer is formed on the lower electrode using a chalcogenide compound doped with carbon, or carbon and nitrogen. A phase-change material layer is obtained by doping a stabilizing metal into the preliminary phase-change material layer. An upper electrode is formed on the phase-change material layer. Since the phase-change material layer may have improved electrical characteristics, stability of phase transition and thermal stability, the phase-change memory unit may have reduced set resistance, enhanced durability, improved reliability, increased sensing margin, reduced driving current, etc.
Abstract:
A phase-changeable memory device includes a substrate having a contact region on an upper surface thereof. An insulating interlayer on the substrate has an opening therein, and a lower electrode is formed in the opening. The lower electrode has a nitrided surface portion and is in electrical contact with the contact region of the substrate. A phase-changeable material layer pattern is on the lower electrode, and an upper electrode is on the phase-changeable material layer pattern. The insulating interlayer may have a nitrided surface portion and the phase-changeable material layer may be at least partially on the nitrided surface portion of the insulating interlayer. Methods of forming phase-changeable memory devices are also disclosed.
Abstract:
A nonvolatile memory cell includes a substrate and a phase changeable pattern configured to retain a state of the memory cell, on the substrate. An electrically insulating layer is provided, which contains a first electrode therein in contact with the phase changeable pattern. The first electrode has at least one of an L-shape when viewed in cross section and an arcuate shape when viewed from a plan perspective. A lower portion of the first electrode may be ring-shaped when viewed from the plan perspective. The lower portion of the first electrode may also have a U-shaped cross-section. An upper portion of the first electrode may also have an arcuate shape that spans more than 180° of a circular arc.
Abstract:
Phase change memory devices can have bottom patterns on a substrate. Line-shaped or L-shaped bottom electrodes can be formed in contact with respective bottom patterns on a substrate and to have top surfaces defined by dimensions in x and y axes directions on the substrate. The dimension along the x-axis of the top surface of the bottom electrodes has less width than a resolution limit of a photolithography process used to fabricate the phase change memory device. Phase change patterns can be formed in contact with the top surface of the bottom electrodes to have a greater width than each of the dimensions in the x and y axes directions of the top surface of the bottom electrodes and top electrodes can be formed on the phase change patterns, wherein the line shape or the L shape represents a sectional line shape or a sectional L shape of the bottom electrodes in the x-axis direction.
Abstract:
A phase-changeable memory device includes a substrate having a contact region on an upper surface thereof. An insulating interlayer on the substrate has an opening therein, and a lower electrode is formed in the opening. The lower electrode has a nitrided surface portion and is in electrical contact with the contact region of the substrate. A phase-changeable material layer pattern is on the lower electrode, and an upper electrode is on the phase-changeable material layer pattern. The insulating interlayer may have a nitrided surface portion and the phase-changeable material layer may be at least partially on the nitrided surface portion of the insulating interlayer. Methods of forming phase-changeable memory devices are also disclosed.