Abstract:
A display may have an array of pixels such as liquid crystal display pixels. The display may include short pixel rows that span only partially across the display and full-width pixel rows that span the width of the display. The gate lines coupled to the short pixel rows may extend into the inactive area of the display. Supplemental gate line loading structures may be located in the inactive area of the display to increase loading on the gate lines that are coupled to short pixel rows. The supplemental gate line loading structures may include data lines and doped polysilicon that overlap the gate lines in the inactive area. In displays that combine display and touch functionality into a thin-film transistor layer, supplemental loading structures may be used in the inactive area to increase loading on common voltage lines that are coupled to short rows of common voltage pads.
Abstract:
A touch screen display may have a color filter layer and a thin-film transistor layer. A layer of liquid crystal material may be located between the color filter layer and the thin-film transistor (TFT) layer. The TFT layer may include thin-film transistors formed on top of a glass substrate. Each display pixel in the TFT layer may include first and second TFTs coupled in series between a data line and a storage capacitor. The first TFT may have a gate that is coupled to a gate line. The second TFT may have a gate that is coupled to a control line that is different than the gate line. A global enable signal may be provided on the control line, where the enable signal is asserted during display intervals and is deasserted during touch intervals. The second TFT may be formed using a top-gate TFT or a bottom-gate TFT arrangement.
Abstract:
An electronic device may include a display and an optical sensor formed underneath the display. The display may have both a full pixel density region and a pixel removal region with a plurality of high-transmittance areas that overlap the optical sensor. To mitigate reflectance mismatch between the full pixel density region and the pixel removal region, the pixel removal region may include a transition region at one or more edges. In the transition region, one or more components may have a gradual density change between the full pixel density region and a central portion of the pixel removal region. Components that may have a changing density in the transition region include dummy thin-film transistor sub-pixels, dummy anodes, a cathode layer, and a touch sensor metal layer. The transition region may also include anodes that gradually change shape and/or size.
Abstract:
An electronic device may include a substrate, an array of display pixels formed on the substrate, first conductive contacts on the substrate, second conductive contacts on the substrate, a flexible printed circuit that is attached to the first conductive contacts, a display driver integrated circuit that is attached to the second conductive contacts, and conductive traces that electrically connect the first conductive contacts to the second conductive contacts. A dielectric layer may cover at least the sidewalls of the conductive traces to protect the conductive traces from damage by an etchant. Subsequently, some or all of the dielectric layer may be removed to prevent damage caused by moisture ingress into the cladding layer.
Abstract:
A display may have an array of organic light-emitting diode display pixels operating at a low refresh rate. Each display pixel may have six thin-film transistors and one capacitor. One of the six transistors may serve as the drive transistor and may be compensated using the remaining five transistors and the capacitor. One or more on-bias stress operations may be applied before threshold voltage sampling to mitigate first frame dimming. Multiple anode reset and on-bias stress operations may be inserted during vertical blanking periods to reduce flicker and maintain balance and may also be inserted between successive data refreshes to improve first frame performance. Two different emission signals controlling each pixel may be toggled together using a pulse width modulation scheme to help provide darker black levels.
Abstract:
To reduce the amount of space occupied in the inactive area of a display by gate driver circuitry, at least a portion of the gate driver circuitry may be positioned in the active area of the display. To accommodate the gate driver circuitry, emissive sub-pixels may be laterally shifted relative to corresponding thin-film transistor sub-pixels. This allows for the thin-film transistor sub-pixels to be grouped adjacent to the central area of the active area, leaving room along an edge of the active area to accommodate one or more additional display components such as gate driver circuitry or fanout portions of data lines.
Abstract:
A display may have organic light-emitting diode pixels formed from thin-film circuitry. The thin-film circuitry may be formed in thin-film transistor (TFT) layers and the organic light-emitting diodes may include anodes and cathodes and an organic emissive layer formed over the TFT layers between the anodes and cathodes. The organic emissive layer may be formed via chemical evaporation techniques. The display may include moisture blocking structures such as organic emissive layer disconnecting structures that introduce one or more gaps in the organic emissive layer during evaporation so that any potential moisture permeating path from the display panel edge to the active area of the display is completely terminated.
Abstract:
An electronic device may include a display having display pixels formed in an active area of the display. The display further includes display driver circuitry for driving gate lines that are routed across the display. A hole such as a through hole, optical window, or other inactive region may be formed within the active area of the display. Multiple gate lines carrying the same signal may be merged together prior to being routed around the hole to help minimize the routing line congestion around the border of the hole. Dummy circuits may be coupled to the merged segment portion to help increase the parasitic loading on the merged segments. The hole may have a tapered shape to help maximize the size of the active area. The hole may have an asymmetric shape to accommodate multiple sub-display sensor components.
Abstract:
An electronic device may include a display and an optical sensor formed underneath the display. A pixel removal region on the display may at least partially overlap with the sensor. The pixel removal region may include a plurality of non-pixel regions each of which is devoid of thin-film transistors. The plurality of non-pixel regions is configured to increase the transmittance of light through the display to the sensor. In addition to removing thin-film transistors in the pixel removal region, additional layers in the display stack-up may be removed. In particular, a cathode layer, polyimide layer, and/or substrate in the display stack-up may be patterned to have an opening in the pixel removal region. A polarizer may be bleached in the pixel removal region for additional transmittance gains. The cathode layer may be removed using laser ablation with a spot laser or blanket illumination.
Abstract:
An organic light-emitting diode display may have rounded corners. A negative power supply path may be used to distribute a negative voltage to a cathode layer, while a positive power supply path may be used to distribute a positive power supply voltage to each pixel in the display. The positive power supply path may have a cutout that is occupied by the negative power supply path to decrease resistance of the negative power supply path in a rounded corner of the display. To mitigate reflections caused by the positive power supply path being formed over tightly spaced data lines, the positive power supply path may be omitted in a rounded corner of the display, a shielding layer may be formed over the positive power supply path in the rounded corner, or non-linear gate lines may be formed over the positive power supply path.