Abstract:
A medical device includes a polymer scaffold crimped to a catheter having an expansion balloon. The scaffold is crimped to the catheter by a multi-step process for increasing scaffold-catheter yield following a crimping sequence. Damage reduction during a crimping sequence includes modifying blades of a crimper, adopting a multi-step crimping sequence, and inflating a supporting balloon to support the scaffold during crimping.
Abstract:
A medical device includes a polymer scaffold crimped to a catheter having an expansion balloon. The scaffold is crimped to the catheter by a multi-step process for increasing scaffold-catheter yield following a crimping sequence. Damage reduction during a crimping sequence includes modifying blades of a crimper, adopting a multi-step crimping sequence, and inflating a supporting balloon to support the scaffold during crimping.
Abstract:
Methods of making a biodegradable polymeric stent made from poly(L-lactide) and a low concentration of L-lactide monomer is disclosed. The concentration of L-lactide is adjusted to provide a degradation behavior that is suitable for different treatment applications including coronary, peripheral, and nasal. Methods include making a poly(L-lactide) material for a stent with uniformly distributed L-lactide monomer through control of polymerization conditions during PLLA synthesis, control of post-processing conditions, or both.
Abstract:
A stent scaffolding including a polymer formulation comprising PLLA and polymandelide is disclosed. The polymandelide reduces the molecular weight drop during processing, particularly during sterilization. The stent scaffolding can further include one or more additional stabilizing agents that additionally reduce the molecular weight drop during processing.
Abstract:
Methods of controlling the degradation profile of a biodegradable stent scaffolding are disclosed. A bioabsorbable scaffold having a plurality of particles incorporated into the scaffolding that accelerate the absorption of the scaffolding after an induction time during degradation is disclosed.
Abstract:
Methods and systems for controlling the moisture content of biodegradable and bioresorbable polymer resin during extrusion above a lower limit that allows for plasticization of the polymer resin melt and below an upper limit to reduce or prevent molecular weight loss are disclosed. Methods are further disclosed involving plasticization of a polymer resin for feeding into an extruder with carbon dioxide and freon.
Abstract:
Methods of fabricating an implantable medical devices such as stents made from biodegradable polymers are disclosed that reduce or minimize chain scission and monomer generation during processing steps. The method includes processing a poly(L-lactide) resin having an number average molecular weight between 150 to 200 kD in an extruder in a molten state. A poly(L-lactide) tube is formed from the processed resin and a stent is fabricated from the tube. The number average molecular weight of the poly(L-lactide) of the stent after sterilization is 70 to 100 kD.
Abstract:
A medical device includes a polymer stent scaffold crimped to a catheter having an expansion balloon. A process for forming the medical device includes placing the scaffold on a support supported by an alignment carriage, and deionizing the scaffold to remove any static charge buildup on the scaffold before placing the scaffold within a crimper to reduce the scaffold's diameter. The polymer scaffold is heated to a temperature below the polymer's glass transition temperature to improve scaffold retention without adversely affecting the mechanical characteristics of the scaffold when deployed to support a body lumen.