Abstract:
The present invention relates to a process for the production of a zeolitic material having a BEA-type framework structure comprising YO2 and X2O3, wherein said process comprises the steps of (1) preparing a mixture comprising one or more sources for YO2 and one or more sources for X2O3; (2) crystallizing the mixture obtained in step (1); (3) subjecting the zeolitic material having a BEA-type framework structure obtained in step (2) to an ion-exchange procedure with Cu; and (4) subjecting the Cu ion-exchanged zeolitic material obtained in step (3) to an ion-exchange procedure with Fe; wherein Y is a tetravalent element, and X is a trivalent element, wherein the mixture provided in step (1) and crystallized in step (2) further comprises seed crystals comprising one or more zeolitic materials having a BEA-type framework structure, and wherein the mixture provided in step (1) and crystallized in step (2) does not contain an organotemplate as a structure-directing agent, as well as to the zeolitic material having a BEA framework structure per se, and to its use, in particular in a method for the treatment of NOx by selective catalytic reduction (SCR).
Abstract:
The present invention relates to a method for the preparation of a treated zeolitic material having a BEA framework structure including the steps of: (i) providing a zeolitic material having a BEA framework structure, wherein the BEA framework structure includes YO2 and X2O3, wherein Y is a tetravalent element, and X is a trivalent element, and wherein the zeolitic material having a BEA framework structure is obtainable and/or obtained from an organotemplate-free synthetic process; (ii) calcining the zeolitic material provided in step (i) at a temperature of 650° C. or more; and (iii) treating the calcined zeolitic material obtained from step (ii) with an aqueous solution having a pH of 5 or less, as well as to zeolitic materials per se preferably obtainable according to the inventive method and to their use, and to a process for converting oxygenates to olefins employing the inventive zeolitic materials.
Abstract:
The present invention relates to a process for preparing at least one sheet silicate comprising Ga and/or Zn, and based thereon, a framework silicate, preferably of the RRO structure type, to the sheet silicate and framework silicate themselves and to the uses of the silicates, especially of the framework silicate, preferably as catalysts.
Abstract:
The present invention relates to a process for the production of a zeolitic material having a framework structure comprising YO2, wherein said process comprises: (1) preparing a mixture comprising one or more tetravalent elements Y in elemental form, one or more organic hydroxide salts, and one or more protic solvents; (2) reacting the mixture obtained in step (1) for converting at least part of the one or more tetravalent elements Y into an oxidic form thereof containing one or more Y—O single bonds and/or one or more Y═O double bonds; and (3) crystallizing a zeolitic material from the mixture obtained in step (2).
Abstract:
A process for the post-treatment of a zeolitic material having a BEA framework structure, the process comprising (i) providing a zeolitic material having a BEA framework structure, wherein the framework structure of the zeolitic material comprises X2O3 and YO2, wherein Y is a tetravalent element and X is a trivalent element and wherein the molar ratio X2O3:YO2 is greater than 0.02:1; (ii) treating the zeolitic material provided in (i) with a liquid solvent system thereby obtaining a zeolitic material having a molar ratio X2O3:YO2 of at most 0.02:1, and at least partially separating the zeolitic material from the liquid solvent system; (iii) treating the zeolitic material obtained from (ii) with a liquid aqueous system having a pH in the range of 5.5 to 8 and a temperature of at least 75° C.
Abstract:
The present invention relates to a process for preparing acrylic acid comprising (i) providing a stream comprising a formaldehyde source and acetic acid and (ii) contacting this stream with an aldol condensation catalyst comprising a zeolitic material, wherein the framework structure of the zeolitic material in (ii) includes Si and O, and has a molar Al:Si ratio of 0:1 to 0.001:1, and wherein the framework structure of the zeolitic material in (ii), in addition to Si and any Al, comprises one or more elements selected from the group consisting of tetravalent elements Y other than Si and trivalent elements X other than Al.
Abstract:
The present invention relates to a micropowder, wherein the particles of the micropowder have a Dv10 value of at least 2 micrometer and the micropowder comprises mesopores which have an average pore diameter in the range of from 2 to 50 nm and comprise, based on the weight of the micropowder, at least 95 weight-% of a microporous aluminum-free zeolitic material of structure type MWW containing titanium and zinc.
Abstract:
The present invention relates to a micropowder, wherein the particles of the micropowder have a Dv10 value of at least 2 micrometer and the micropowder comprises mesopores which have an average pore diameter in the range of from 2 to 50 nm and comprise, based on the weight of the micropowder, at least 95 weight-% of a microporous aluminum-free zeolitic material of structure type MWW containing titanium and zinc.
Abstract:
The present invention relates to a crystalline material having a framework structure comprising O and one or more tetravalent elements Y, and optionally comprising one or more trivalent elements X, wherein the crystalline material displays a crystallographic unit cell of the monoclinic space group C2, wherein the unit cell parameter a is in the range of from 14.5 to 20.5 Å, the M unit cell parameter b is in the range of from 14.5 to 20.5 Å, the unit cell parameter c in the range of from 11.5 to 17.5 Å and the unit cell parameter β is in the range of from 109 to 118°, wherein the framework density is in the range of from 11 to 23 T-atoms/1000 Å3 wherein the framework structure comprises 12 membered rings, and wherein the framework structure displays a 2-dimensional channel e dimensionality of 12 membered ring channels. The present invention further relates to a process for the production of said material, as N well as to its use, in particular as a catalyst or catalyst component.
Abstract:
The present invention relates to a process for the calcination of a zeolitic material, wherein said process comprises the steps of (i) providing a zeolitic material comprising YO2 and optionally further comprising X2O3 in its framework structure in the form of a powder and/or of a suspension of the zeolitic material in a liquid, wherein Y stands for a tetravalent element and X stands for a trivalent element; (ii) atomization of the powder and/or of the suspension of the zeolitic material provided in (i) in a gas stream for obtaining an aerosol; (iii) calcination of the aerosol obtained in (ii) for obtaining a calcined powder; as well as to a zeolitic material obtainable and/or obtained according the inventive process, and to its use as a molecular sieve, as an adsorbent, for ion-exchange, as a catalyst, and/or as a catalyst support.