Abstract:
A method is disclosed of predicting cancer patient response to immune checkpoint inhibitors, e.g., an antibody drug blocking ligand activation of programmed cell death 1 (PD-1) or CTLA4. The method includes obtaining mass spectrometry data from a blood-based sample of the patient, obtaining integrated intensity values in the mass spectrometry data of a multitude of pre-determined mass-spectral features; and operating on the mass spectral data with a programmed computer implementing a classifier. The classifier compares the integrated intensity values with feature values of a training set of class-labeled mass spectral data obtained from a multitude of melanoma patients with a classification algorithm and generates a class label for the sample. A class label “early” or the equivalent predicts the patient is likely to obtain relatively less benefit from the antibody drug and the class label “late” or the equivalent indicates the patient is likely to obtain relatively greater benefit from the antibody drug.
Abstract:
A method and system for predicting in advance of treatment whether a cancer patient is likely, or not likely, to obtain benefit from administration of a yeast-based immune response generating therapy, which may be yeast-based immunotherapy for mutated Ras-based cancer, alone or in combination with another anti-cancer therapy. The method uses mass spectrometry of a blood-derived patient sample and a computer configured as a classifier using a training set of class-labeled spectra from other cancer patients that either benefited or did not benefit from an immune response generating therapy alone or in combination with another anti-cancer therapy. Also disclosed are methods of treatment of a cancer patient, comprising administering a yeast-based immune response generating therapy, which may be yeast-based immunotherapy for mutated Ras-based cancer, to a patient selected by a test in accordance with predictive mass spectral methods disclosed herein, in which the class label for the spectra indicates the patient is likely to benefit from the yeast-based immunotherapy.
Abstract:
Hepatocellular carcinoma (HCC) is detected in a patient with liver disease. Mass spectrometry data from a blood-based sample from the patient is compared to a reference set of mass-spectrometry data from a multitude of other patients with liver disease, including patients with and without HCC, in a general purpose computer configured as a classifier. The classifier generates a class label, such as HCC or No HCC, for the test sample. A laboratory system for early detection of HCC in patients with liver disease is also disclosed. Alternative testing strategies using AFP measurement and a reference set for classification in the form of class-labeled mass spectral data from blood-based samples of lung cancer patients are also described, including multi-stage testing.
Abstract:
Hepatocellular carcinoma (HCC) is detected in a patient with liver disease. Mass spectrometry data from a blood-based sample from the patient is compared to a reference set of mass-spectrometry data from a multitude of other patients with liver disease, including patients with and without HCC, in a general purpose computer configured as a classifier. The classifier generates a class label, such as HCC or No HCC, for the test sample. A laboratory system for early detection of HCC in patients with liver disease is also disclosed. Alternative testing strategies using AFP measurement and a reference set for classification in the form of class-labeled mass spectral data from blood-based samples of lung cancer patients are also described, including multi-stage testing.
Abstract:
A method and system for predicting in advance of treatment whether a cancer patient is likely, or not likely, to obtain benefit from administration of a yeast-based immune response generating therapy, which may be yeast-based immunotherapy for mutated Ras-based cancer, alone or in combination with another anti-cancer therapy. The method uses mass spectrometry of a blood-derived patient sample and a computer configured as a classifier using a training set of class-labeled spectra from other cancer patients that either benefitted or did not benefit from an immune response generating therapy alone or in combination with another anti-cancer therapy. Also disclosed are methods of treatment of a cancer patient, comprising administering a yeast-based immune response generating therapy, which may be yeast-based immunotherapy for mutated Ras-based cancer, to a patient selected by a test in accordance with predictive mass spectral methods disclosed herein, in which the class label for the spectra indicates the patient is likely to benefit from the yeast-based immunotherapy.
Abstract:
A method of analyzing a biological sample, for example serum or other blood-based samples, using a MALDI-TOF mass spectrometer instrument is described. The method includes the steps of applying the sample to a sample spot on a MALDI-TOF sample plate and directing more than 20,000 laser shots to the sample at the sample spot and collecting mass-spectral data from the instrument. In some embodiments at least 100,000 laser shots and even 500,000 shots are directed onto the sample. It has been discovered that this approach, referred to as “deep-MALDI”, leads to a reduction in the noise level in the mass spectra and that a significant amount of additional spectral information can be obtained from the sample. Moreover, peaks visible at lower number of shots become better defined and allow for more reliable comparisons between samples.
Abstract:
A classifier and method for predicting or characterizing graft-versus-host disease in a patient after receiving a transplant of pluripotent hematopoietic stem cells or bone marrow. The classifier operates on mass-spectral data obtained from a blood-based sample of the patient and is configured as a combination of filtered mini-classifiers using a regularized combination method, such as logistic regression with extreme drop-out. The method also uses a “deep-MALDI” mass spectrometry technique in which the blood-based samples are subject to at least 100,000 laser shots in MALDI-TOF mass spectrometry in order to reveal greater spectral content and detect low abundance proteins circulating in serum associated with graft-versus-host disease.
Abstract:
Classifier generation methods are described in which features used in classification (e.g., mass spectral peaks) are selected, or deselected using bagged filtering. A development sample set is split into two subsets, one of which is used as a training set the other of which is set aside. We define a classifier (e.g., K-nearest neighbor, decision tree, margin-based classifier or other) using the training subset and at least one of the features (or subsets of two or more features in combination). We apply the classifier to a subset of samples. A filter is applied to the performance of the classifier on the sample subset and the at least one feature is added to a “filtered feature list” if the classifier performance passes the filter. We do this for many different realizations of the separation of the development sample set into two subsets, and, for each realization, different features or sets of features in combination. After all the iterations are performed the filtered feature list is used to either select features, or deselect features, for a final classifier.
Abstract:
Methods using mass spectral data analysis and a classification algorithm provide an ability to determine whether a solid epithelial tumor cancer patient is likely to benefit from a therapeutic agent or a combination of therapeutic agents targeting agonists of the receptors, receptors or proteins involved in MAPK (mitogen-activated protein kinase) pathways or the PKC (protein kinase C) pathway upstream from or at Akt or ERK/JNK/p38 or PKC, such as therapeutic agents targeting EGFR and/or HER2. The methods also provide the ability to determine whether the cancer patient is likely to benefit from the combination of a therapeutic agent targeting EFGR and a therapeutic agent targeting COX2; or whether the cancer patient is likely to benefit from the treatment with an NF-κB inhibitor.
Abstract:
A testing method for identification whether a cancer patient is a member of a group or class of cancer patients that are not likely to benefit from administration of a platinum-based chemotherapy agent, e.g., cisplatin, carboplatin or analogs thereof, either alone or in combination with other non-platinum chemotherapy agents, e.g., gemcitabine and paclitaxel. This identification can be made in advance of treatment. The method uses a mass spectrometer obtaining a mass spectrum of a blood-based sample from the patient, and a computer operating as a classifier and using a stored training set comprising class-labeled spectra from other cancer patients.