摘要:
A heterojunction bipolar transistor having a single-crystal emitter with reduced charge storage and acceptable current gain is described herein. The heterojunction transistor comprises a collector region, a base region formed on the collector region, and a single-crystal emitter region grown on the base region by low temperature epitaxy. During the formation of the base region, a graded profile of 5-23% germanium is added to the base, as the distance to the collector region decreases, thereby decreasing the base bandgap as it approaches the collector region. Further, during the formation of the emitter region, a graded profile of 0-20% germanium is added to the emitter as the distance from the emitter-base junction increases. Thus, the emitter bandgap decreases as it moves farther from the emitter-base junction. The result of the above grading profiles is that the emitter bandgap is narrower at the emitter contact than the base bandgap at the emitter-base junction.
摘要:
An in-situ doped n-type silicon layer is provided by a low temperature, low pressure chemical vapor deposition process employing a germanium-containing gas in combination with the n-type dopant containing gas to thereby enhance the in-situ incorporation of the n-type dopant into the silicon layer as an electronically active dopant. Also provided are a silicon layer including a P-N junction wherein the layer contains an n-type dopant and germanium, and devices such as transistors incorporating an in-situ n-doped silicon layer.
摘要:
Metallized semiconductor chips, such as are intended for VLSI, are coated with a first layer of SiO2 followed by a second layer of CVD diamond or DLC as an etch stop. The resulting structure is reproducibly and controllably planarized using a chem-mech slurry and an appropriate polishing pad, enabling subsequent layers to be built up similarly.
摘要:
A P- semiconductor material substrate which has been ion-implanted with N-type dopants to form an N+ subcollector layer is annealed in Argon to further remove implant damage and drive the dopant ions deeper into the P substrate. Next a lightly doped N- epitaxial layer is grown on the N+ subcollector layer. This forms the blanket collector. A P- well region is formed by growing a pad oxide of 10 nm on the N-epi layer and a 200 nm layer of nitride is then deposited on top of the layer oxide. A photoresist etch mask is used to pattern the P- well region. A reactive ion etch is performed through the dielectric oxide and nitride layers, through the epitaxial layer and stopping in the subcollector layer. A layer of low temperature expitaxial material is grown over the structure using ultra-high vacuum/chemical vapor depositions such that the epitaxial layer extends above the surface of the epitaxial layer and includes a P+ heavily doped layer and a lightly P-doped surface layer. The heavily doped P+ layer provides the low resistance contact to the collector region and the lightly doped P-layer is the collector region and its thickness is determined by the diffusion of the heavily doped layer during the entire process.
摘要:
A fabrication method for forming SOI structures where perfect material is grown epitaxially on a substrate and then, through a series of selective etches and oxidations, an insulating layer is formed below the epitaxial silicon. In the method, low temperature epitaxial techniques are employed to grow a layered structure including a first layer p++ silicon on a substrate wafer, a layer of intrinsic silicon is then formed on the first p++ silicon layer, and a second layer of p++ silicon is formed on the intrinsic silicon layer, and a finally a layer of p-silicon is fabricated on top of the second p++ silicon layer. Grooves are formed through the p-layer, the second p++ silicon layer, the intrinsic silicon layer, and stopped in the first p++ silicon layer. An etch is then employed to remove the intrinsic layer long enough for the p++ silicon layer to be totally undercut, leaving an air gap between the two p++ silicon layers. An oxidation step is then performed to form a bottom insulator consisting of the oxidized first p++ silicon layer and on an upper insulator consisting of the oxidized second p++ silicon layer.
摘要:
An improved X-ray lithography mask has been fabricated by forming an X-ray absorbing lithography pattern on a supporting foil of hydrogenated amorphous carbon. The substrate foil is formed by depositing a carbon film in the presence of hydrogen onto a surface having a temperature below 375.degree. C. The hydrogen concentration is maintained sufficiently high that the resulting film has at least one atom percent of hydrogen. A film having about 20 atom percent of hydrogen is preferred. While impurities are permitted, impurities must be maintained at a level such that the optical bandgap of the resulting film is at least one electron volt. A film with an optical bandgap of about 2 electron volts is preferred.