Abstract:
A semiconductor photovoltaic device with an absorber layer for absorbing incident light, and a light transmitting layer located on the semiconductor body. The light transmitting layer induces an inversion layer in the semiconductor body and the current collected at the inversion layer is transported to a conductive electrode spaced from the light transmitting layer on the semiconductor body.
Abstract:
Systems and methods for optical nanostructures that use the interference of high order Mie resonances to locally control wavefront with high quality factor in two dimensions are described. The high-order Mie-resonant metasurfaces can be used to create band-stop filters, beam deflectors, lenses, beam splitters and holograms with high quality factor.
Abstract:
Systems and methods of three-terminal tandem solar cells are described. Three-terminal metal electrodes can be formed to contact subcells of the tandem solar cell. The three-terminal tandem cell can improve the device efficiency to at least 30%.
Abstract:
Resonant optical cavities incorporating black phosphorus to enable electrically tunable control of light are disclosed. Methods and devices are described that use black phosphorus as an electrically tunable optical material to control phase, amplitude and/or polarization of light from visible to mid-infrared wavelengths. The operating wavelength of the optical cavities depends on the thickness of the embedded black phosphorous. Tunable control of light is performed by adjusting the doping level of black phosphorous.
Abstract:
Luminescent solar concentrators in accordance with various embodiments of the invention can be designed to minimize photon thermalization losses and incomplete light trapping using various components and techniques. Cadmium selenide core, cadmium sulfide shell (CdSe/CdS) quantum dot (“QD”) technology can be implemented in such devices to allow for near-unity QDs and sufficiently large Stokes shifts. Many embodiments of the invention include a luminescent solar concentrator that incorporates CdSe/CdS quantum dot luminophores. In further embodiments, anisotropic luminophore emission can be implemented through metasurface/plasmonic antenna coupling. In several embodiments, red-shifted luminophores are implemented. Additionally, top and bottom spectrally-selective filters, such as but not limited to selectively-reflective metasurface mirrors and polymeric stack filters, can be implemented to enhance the photon collection efficiency. In some embodiments, luminescent solar concentrator component is optically connected in tandem with a planar Si subcell, forming a micro-optical tandem luminescent solar concentrator.
Abstract:
Systems and methods for transparent materials implementing effectively transparent conductors in accordance with various embodiments of the invention are illustrated. One embodiment includes a window including a first transparent layer of transparent material having a first surface and a second surface, a first plurality of triangular conductors in optical communication with the first transparent layer of glass, wherein each of the first plurality of triangular conductors includes a base side that is parallel to the first surface of the first transparent layer of glass and wherein the first plurality of triangular conductors is configured to redirect a portion of incident light, wherein the portion of incident light travels through both the first surface and the second surface of the first transparent layer of glass.
Abstract:
Luminescent solar concentrators having a grid-based PV design can be implemented in many different ways. In several embodiments, the LSC is implemented using infrared luminophore technology combined with a PV design implementing a grid of PV cells. LSCs can incorporate quantum dots that absorb uniformly across the visible spectrum and photoluminesce down-shifted energy light in the infrared wavelength regime. Some embodiments include PV cells utilizing micro-grid structures that can be implemented for scalable and controllably transparent applications, such as but not limited to power windows targeted for building integrated photovoltaic applications. In a number of embodiments, the LSCs can utilize a unique PV cell form factor and spectral filter coatings to increase the thermal insulation of the window and enhance photocurrent capture by a silicon micro-grid.
Abstract:
Systems and methods in accordance with embodiments of the invention implement electrically tunable metasurfaces. In one embodiment, an electrically tunable metasurface reflectarray includes: a mirrored surface; a conductive layer; a dielectric layer; where the conductive layer and the dielectric layer are in direct contact, and thereby define a conductor-dielectric interface; a plurality of subwavelength antenna elements; and an electrical power source configured to establish a potential difference between at least one subwavelength antenna element and the mirrored surface; where a potential difference between a subwavelength antenna element and the mirrored surface applies an electric field to a corresponding region of the electrically tunable metasurface reflectarray; where any applied electric fields in conjunction with the geometry and the material composition of each of the subwavelength antenna elements, the conductive layer, and the dielectric layer, enable the electrically tunable metasurface reflectarray to measurably augment the propagation characteristics of incident electromagnetic waves.
Abstract:
A plasmonic device having a transparent conducting oxide (TCO) waveguide and a tunable voltage applied across the TCO and a metal layer for modulating an input optical signal.
Abstract:
An optical modulation device includes a plasmonic nano-antenna layer, a metal layer that faces the plasmonic nano-antenna layer, and a permittivity variation layer and a dielectric material layer between the plasmonic nano-antenna layer and the metal layer. An active area formed in the permittivity variation layer according to an external signal may function as a gate that controls optical modulation performance.