摘要:
A method of manufacturing a biopolymer optofluidic device including providing a biopolymer, processing the biopolymer to yield a biopolymer matrix solution, providing a substrate, casting the biopolymer matrix solution on the substrate, embedding a channel mold in the biopolymer matrix solution, drying the biopolymer matrix solution to solidify biopolymer optofluidic device, and extracting the embedded channel mold to provide a fluidic channel in the solidified biopolymer optofluidic device. In accordance with another aspect, an optofluidic device is provided that is made of a biopolymer and that has a channel therein for conveying fluid.
摘要:
The present invention provides for photonic nanoimprinted silk fibroin-based materials and methods for making same, comprising embossing silk fibroin-based films with photonic nanometer scale patterns. In addition, the invention provides for processes by which the silk fibroin-based films can be nanoimprinted at room temperature, by locally decreasing the glass transition temperature of the silk film. Such nanoimprinting process increases high throughput and improves potential for incorporation of silk-based photonics into biomedical and other optical devices.
摘要:
A method of manufacturing a biopolymer photonic crystal includes providing a biopolymer, processing the biopolymer to yield a biopolymer matrix solution, providing a substrate, casting the matrix solution on the substrate, and drying the biopolymer matrix solution to form a solidified biopolymer film. A surface of the film is formed with a nanopattern, or a nanopattern is machined on a surface of the film. In another embodiment, a plurality of biopolymer films is stacked together. A photonic crystal is also provided that is made of a biopolymer and has a nanopatterned surface. In another embodiment, the photonic crystal includes a plurality of nanopatterned films that are stacked together.
摘要:
The present invention provides compositions and methods for printing a predetermined pattern on silk fibroin materials using water based “inks.” Such technique may be useful for micro- and nano-engineering applications.
摘要:
The present invention is directed to silk-based drug delivery compositions or compositions for sustained delivery of therapeutic agent(s), such as glucagon-like peptide (GLP-1) receptor agonists, as well as methods of making and using the same.
摘要:
The present application provides novel methods for the fabrication of nanostructures. More specifically, the invention relates to direct electron beam lithography with the use of silk fibroin as “green” resists.
摘要:
The present invention provides, among other things, a silk ceramic material having enzymatically cross-linked amino acid side chains to generate injectable and flexible foam ceramics. Provided are compositions and methods of producing soft, flexible ceramic foam with silk polymeric crosslinking to serve as binders. Materials have applications in osteochondral and dental replacement and repair.
摘要:
Protein-protein imprinting of silk fibroin is introduced as a rapid, high-fidelity, and/or high-throughput method for the fabrication of nanoscale structures in silk films, through controlled manipulation of heat and/or pressure. High resolution imprinting on conformal surfaces is also demonstrated.
摘要:
The present disclosure provides, among other things, systems for processing silk. Provided systems purify silk fibroin solutions without inducing conformational changes in the silk proteins. Provided systems concentrate silk fibroin solutions. The present disclosure also provides methods of purifying and concentrating silk fibroin solutions. Provided systems and methods are useful for processing silk fibroin for any application.