Abstract:
An electronic device with accelerated boot process and a method for the same are proposed. When the host of the electronic device is in the off mode or standby mode, users can input a normal boot signal or a fast boot signal to activate the host. The boot signal is encoded by an encoder for producing a corresponding code. The host determines whether the input signal is the normal boot signal or the fast boot signal according to the received code. If the received code is the normal boot signal, the host performs a normal boot process. If the received code is the fast boot signal, an instant launcher directly launches application programs specified in the fast boot signal and blocks the start of unnecessary application programs. The boot process of the electronic device can be effectively accelerated, and users can define several boot modes themselves to meet different requirements.
Abstract:
An improved magnetoresistive memory device has a reduced distance between the magnetic memory element and a conductive memory line used for writing to the magnetic memory element. The reduced distance is facilitated by forming the improved magnetoresistive memory device according to a method that includes forming a mask over the magnetoresistive memory element and forming an insulating layer over the mask layer, then removing portions of the insulating layer using a planarization process. A conductive via can then be formed in the mask layer, for example using a damascene process. The conductive memory line can then be formed over the mask layer and conductive via.
Abstract:
In one example, an MRAM memory array includes a plurality of word lines, a plurality of bit lines crossing the word lines, and a plurality of first and second diodes, and magnetic tunnel junction memories. Each first diode includes a cathode, and an anode coupled to each bit line. Each second diode includes an anode, and a cathode coupled to each word line. The magnetic tunnel junction memories include a pinned layer, a free layer, and a non-magnetic layer. The non-magnetic layer is located between the pinned layer and the free layer. Each diode is positioned at crossing points of the bit lines and the word lines and connected between the first diode at the corresponding crossing bit line and the second diode at the corresponding crossing word line.
Abstract:
A method for forming semi-insulating portions in a semiconductor substrate provides depositing a hardmask film over a semiconductor substructure to a thickness sufficient to prevent charged particles from passing through the hardmask. The hardmask is patterned creating openings through which charged particles pass and enter the substrate during an implantation process. The semi-insulating portions may extend deep into the semiconductor substrate and electrically insulate devices formed on opposed sides of the semi-insulating portions. The charged particles may advantageously be protons and further substrate portions covered by the patterned hardmask film are substantially free of the charged particles.
Abstract:
A multilevel reference generator has a plurality of nonlinear standard resistive elements where each resistive element is biased at a constant level to develop a resultant level. The multilevel reference generator has a plurality of mirror sources. Each mirror source is in communication with the one of the plurality of resistive elements such that each mirror source receives the resultant level from the one standard resistive element and provides a mirrored replication of the resultant level. The multilevel reference generator has a plurality of reference level combining circuits. The reference level combining circuit includes a resultant level summing circuit that additively combines the first and second mirrored replication level and a level scaling circuit to create a scaling of the combined first and second mirrored replication levels to create the reference level.
Abstract:
A switch device with a spiral mechanism for optical fiber is disclosed for improved reliablility. It includes: (a) a plurality of non-rotatable optical fibers, each having first end and second ends, the first end of each the non-rotatable optical fiber being provided with a parallel convergent lens, the second end of each the non-rotatable optical fiber being provided with a connector to connect an interface for receiving an optical signal; the plurality of the non-rotatable optical fibers being fixed on a circular fixture; (b) a rotatable optical fiber having first and second ends, wherein the first end of the rotatable optical fiber passes through a fixture hole, and connected with connector for receiving a optical signal, while the second end of the rotatable optical fiber being fixed to a motor; and (c) a spiral pipe made of a rigid material being sleeved on a portion of the rotatable optical fiber between the first and second ends The second end of the rotatable optical fiber is arranged such that it can be connected to the first end of one of the non-rotatable optical fibers without contact to form into a coupling channel within an angular scope of 360 degrees.
Abstract:
An apparatus for fixing a storage device includes a metal bracket, and a fixing frame slidably received in the bracket. The bracket includes two side plates, and one of the side plates forms a resilient tab. The fixing frame includes two opposite fixing arms each defining a latching hole, two resilient members, and two metal fasteners. Each resilient member includes a pad clinging to an inner surface of a corresponding one of the fixing arms, and a projection engaging in the latching hole of the corresponding fixing arm. Each fastener includes a head, and a pin. The heads are received in the corresponding latching holes and abut against outer sides of the corresponding projections. The pins extend through the corresponding through holes for engaging with the storage device. A protrusion extends outwards from one of the heads to contact the resilient tab and connect the storage device to ground.
Abstract:
A method for manufacturing TSVs comprises following steps: A stack structure having a substrate, an ILD layer and a dielectric stop layer is provided, in which an opening penetrating through the ILD layer and the dialectic stop layer and further extending into the substrate is formed. After an insulator layer and a metal barrier are formed on the stack structure, a top metal layer is formed on the stack structure to fulfill the opening. A first planarization process stopping on the metal barrier is conducted, wherein the first planarization process has a polishing rate for removing the metal barrier less than that for removing the top metal layer. A second planarization process stopping on the dielectric stop layer is conducted, wherein the second planarization process has a polishing rate for removing the insulator layer greater than that for removing the dielectric stop layer. The dielectric stop layer is than removed.
Abstract:
A method for manufacturing TSVs, wherein the method comprises several steps as follows: A stack structure having a substrate and an ILD layer (inter layer dielectric layer) is provided, in which an opening penetrating through the ILD layer and further extending into the substrate is formed. After an insulator layer and a metal barrier layer are formed on the stack structure and the sidewalls of the opening, a top metal layer is then formed on the stack structure to fulfill the opening. A first planarization process stopping on the barrier layer is conducted to remove a portion of the top metal layer. A second planarization process stopping on the ILD layer is subsequently conducted to remove a portion of the metal barrier layer, a portion of the insulator layer and a portion of the top metal layer, wherein the second planarization process has a polishing endpoint determined by a light interferometry or a motor current.
Abstract:
The present invention relates to a reactive printing dye composition, which includes: (a) at least one reactive dye; (b) an organic buffer; and (c) a mirabilite or a dispersant. The reactive printing dye composition of the present invention is capable for being used in the fabric-dyeing, for example, dyeing of cotton, hemp, silk, rayon, wool, blending, etc. The reactive printing dye composition of the present invention is advantageous in high pH value stability, high storage stability, and reduced degradation in dyeing strength. In addition, the present invention further provides an aqueous reactive printing dye composition.