Abstract:
In accordance with embodiment, a method includes amplifying signal provided by a microphone to form an amplified signal. The method also includes converting the amplified signal into a frequency-based signal having a frequency dependent on an amplitude of the amplified signal. The frequency-based signal is converted into a pulse code modulated bitstream.
Abstract:
Embodiments relate to systems and methods for sensor self-diagnostics using multiple signal paths. In an embodiment, the sensors are magnetic field sensors, and the systems and/or methods are configured to meet or exceed relevant safety or other industry standards, such as SIL standards. For example, a monolithic integrated circuit sensor system implemented on a single semiconductor ship can include a first sensor device having a first signal path for a first sensor signal on a semiconductor chip; and a second sensor device having a second signal path for a second sensor signal on the semiconductor chip, the second signal path distinct from the first signal path, wherein a comparison of the first signal path signal and the second signal path signal provides a sensor system self-test.
Abstract:
Some embodiments of the present disclosure relate to a sensor interface module having a linearization module that increase a size of a linear region of a current output from a high-side current source. The disclosed sensor interface module has a reference voltage source configured to generate a reference signal. An output driver stage having a high-side current source and a low-side current source is connected in series at an output node of the sensor interface module. A closed control loop configured to receive the reference signal and to generate a digital control signal that drives the high-side current source. A linearization module configured to operate the low-side current source to approximate a nonlinearity of the high-side current source and to use the approximated nonlinearity to generate a compensation function that mitigates nonlinearities in the high side current source.
Abstract:
Some embodiments of the present disclosure relate to a sensor interface module. The sensor interface module includes a comparator having a first comparator input, a second comparator input, and a comparator output. A current- or voltage-control element has a control terminal coupled to the comparator output and also has an output configured to deliver a modulated current or modulated voltage signal to an output of the sensor interface module. A first feedback path couples the output of the current- or voltage-control element to the first comparator input. A summation element has a first summation input, a second summation input, and a summation output, wherein the summation output is coupled to the second comparator input. A supply voltage module provides a supply voltage signal to the first summation input. A second feedback path couples the comparator output to the second summation input.
Abstract:
A receiver for receiving messages from a transmitter includes a controller and a driver stage for providing a supply voltage to the transmitter based on a control signal. The controller is configured to provide the control signal to compensate for changes of the supply voltage caused by a modulation of the current consumption of the transmitter, such that the supply voltage remains in a predefined range. Furthermore, the controller is configured to evaluate a series of succeeding values of the control signal to derive a message generated by the transmitter by modulating its current consumption.
Abstract:
In one embodiment, A system for communication has a receiver for receiving data from a passive transmitter capacitively coupled to the receiver. The receiver has a sensing element having a plurality of terminals configured to be capacitively coupled to the passive transmitter and DC isolated from the passive transmitter.
Abstract:
A sensor system method of production includes forming first and second structures of the magnetoresistive system, heating the first and second structures, applying a magnetic field in a reference direction to the first and second structures, and cooling the first and second structures to fix a reference magnetization in the first and second structures in the reference direction. The structures are heated to near or above a blocking temperature, whereby the shape anisotropy of the first structure forces the reference magnetization to rotate into a first new orientation and the shape anisotropy of the second structure forces the reference magnetization to rotate into a second new orientation whereby the reference magnetization in the first and second structures rotate in opposite directions. The rotated reference magnetizations of the first and second structures are pinned in the respective new orientation.
Abstract:
A sensor system method of production includes forming first and second structures of the magnetoresistive system, heating the first and second structures, applying a magnetic field in a reference direction to the first and second structures, and cooling the first and second structures to fix a reference magnetization in the first and second structures in the reference direction. The structures are heated to near or above a blocking temperature, whereby the shape anisotropy of the first structure forces the reference magnetization to rotate into a first new orientation and the shape anisotropy of the second structure forces the reference magnetization to rotate into a second new orientation whereby the reference magnetization in the first and second structures rotate in opposite directions. The rotated reference magnetizations of the first and second structures are pinned in the respective new orientation.
Abstract:
A microphone and a method for calibrating a microphone are disclosed. In one embodiment the method for calibrating a microphone comprises operating a MEMS device based on a first AC bias voltage, measuring a pull-in voltage, calculating a second AC bias voltage or a DC bias voltage, and operating the MEMS device based the second AC bias voltage or the DC bias voltage.
Abstract:
The present disclosure is directed towards a sensor interface module that delivers a supply voltage to a plurality of sensors, and which exchanges data signals between the plurality of sensors and a control unit (e.g., an ECU). The sensor interface often employs a single-bit comparator (or a coarse analog to digital converter (ADC), e.g., a 2-bit or 3-bit ADC) to track signals to be exchanged between the sensors and controller over the sensor interface. Compared to power hungry ADC with more bits (e.g., 32 bit ADC), the single-bit comparator/coarse ADC limits hardware complexity and power consumption. In addition, in some embodiments the sensor interface module can include an estimator and assist comparators to speed up the tracking ability of the sensor interface module. In this way, techniques provided herein facilitate reliable, low-power communication between a control unit (e.g., an ECU) and its corresponding sensors.