Abstract:
A method for detecting hidden defects and patterns, the method includes: receiving an object that comprises an opaque layer positioned above an intermediate layer; defining an energy band in response to at least one characteristic of the opaque layer and at least one characteristic of a scanning electron microscope; illuminating the object with a primary electron beam; and generating images from electrons that arrive to a spectrometer having an energy within the energy band. A scanning electron microscope that includes a stage for supporting an object that comprises an opaque layer positioned above an intermediate layer; a controller, adapted to receive or define an energy band in response to at least one characteristic of the opaque layer and at least one characteristic of a scanning electron microscope; illumination optics adapted to illuminate the object with a primary electron beam; an electron spectrometer, controlled by the controller such as to selectively reject electrons in response to the defined energy band; and a processor, coupled to the spectrometer, adapted to generate images from detection signals provided by the spectrometer.
Abstract:
A method for improving the resolution of a scanning electron microscope, the method includes: defining an energy band in response to an expected penetration depth of secondary electrons in an object; illuminating the object with a primary electron beam; and generating images from electrons that arrive to a spectrometer having an energy within the energy band. A scanning electron microscope that includes: a stage for supporting an object; a controller, adapted to receive or define an energy band an energy band in response to an expected penetration depth of secondary electrons in an object; illumination optics adapted to illuminate the object with a primary electron beam; a spectrometer, controlled by the controller such as to selectively reject electrons in response to the defined energy band; and a processor that is adapted to generate images from detection signals provided by the spectrometer.
Abstract:
A system and method for multi detector detection of electrons, the method includes the steps of directing a primary electron beam, through a column, to interact with an inspected object, directing, by introducing a substantial electrostatic field, electrons reflected or scattered from the inspected objects towards multiple interior detectors, whereas at least some of the directed electrons are reflected or scattered at small angle in relation to the inspected object; and receiving detection signals from at least one interior detector.
Abstract:
A system and method for reducing ion contamination in an object, the ion contamination introduced by a contaminating ion beam milling step. The system includes means for defining a suspected ion contaminated area; and means for removing the suspected ion contaminated area by a non-contaminating process, which usually involves directing an electron beam towards the removed area while allowing the beam to interact with additional material. The method includes the steps of defining a suspected ion contaminated area; and removing the suspected ion contaminated area by non-contaminating process.
Abstract:
An apparatus and method for fast changing a focal length of a charged particle beam the method comprising the step of changing a control signal in response to a relationship between the control signal voltage value and the focal length of the charged particle beam.