Abstract:
The present invention provides a controller for controlling a modeled plant robustly against disturbance. The controller comprises an estimator and a control unit. The estimator estimates disturbance applied to the plant. The control unit determines an input to the plant so that an output of the plant converges to a desired value. The input to the plant is determined to include a value obtained by multiplying the estimated disturbance by a predetermined gain. Since estimated disturbance is reflected in the input to the plant, control having robustness against disturbance is implemented. The controller may comprise a state predictor. The state predictor predicts the output of the plant based on the estimated disturbance and dead time included in the plant. The control unit determined the input to the plant so that the predicted output converges to a desired value. Since the state predictor allows for the dead time, the accuracy of the control is improved. The estimated disturbance is reflected in the predicted output, an error between the predicted output and an actual output of the plant is removed.
Abstract:
A control system for a plant is disclosed. The control system includes a controller which controls the plant based on a controlled object model which is obtained by modeling the plant. The controlled object model is modeled using an input and an output of the plant which are sampled at intervals of a period which is longer than a control period of the controller. The controller carries out a control process of the plant at intervals of the control period.
Abstract:
A high precision deterioration determination device for an exhaust gas purifier of an engine is provided. The engine includes an exhaust gas purifier disposed in an exhaust pipe of the engine, and a downstream exhaust gas sensor disposed in the exhaust pipe on the downstream of the purifier for generating outputs corresponding to components of an exhaust gas. The electronic control unit controls an air/fuel ratio of the engine to a predetermined value based on the outputs of the downstream exhaust gas sensor. The control unit is programmed to perform a non-linear filtering to extract rectangle-shaped waveform components from the outputs of the downstream exhaust gas sensor. The control unit subtracts the rectangle-shaped waveform components from the sensor outputs to extract noise components representing a degree of the catalyst deterioration.
Abstract:
A control system for a plant is disclosed. In this control system, a model parameter vector of a controlled object model which is obtained by modeling said plant, is calculated. A sliding mode controller is included in the control system. The sliding mode controller controls the plant using the identified model parameter vector. A damping input is calculated according to a speed of change in an output of the plant, and an element of the model parameter vector. A control input form the sliding mode controller to the plant includes the calculated damping input.
Abstract:
A high precision deterioration determination device for an exhaust gas purifier of an engine is provided. The engine includes an exhaust gas purifier disposed in an exhaust pipe of the engine, and a downstream exhaust gas sensor disposed in the exhaust pipe on the downstream of the purifier for generating outputs corresponding to components of an exhaust gas. The electronic control unit controls an air/fuel ratio of the engine to a predetermined value based on the outputs of the downstream exhaust gas sensor. The control unit is programmed to perform a non-linear filtering to extract rectangle-shaped waveform components from the outputs of the downstream exhaust gas sensor. The control unit subtracts the rectangle-shaped waveform components from the sensor outputs to extract noise components representing a degree of the catalyst deterioration.
Abstract:
A control system for an internal combustion engine having at least one intake valve and at least one exhaust valve is disclosed. The control system includes a valve operating characteristic varying mechanism and a hydraulic control valve for controlling a hydraulic pressure to be supplied to the valve operating characteristic varying mechanism. The valve operating characteristic varying mechanism continuously varies an operating phase of the at least one intake valve and/or the at least one exhaust valve of the engine. A cleaning operation of the hydraulic control valve is performed in a predetermined operating condition of the engine. An intake air amount of the engine is controlled according to an operating condition of the valve operating characteristic varying mechanism when the cleaning operation of the hydraulic control valve is performed.
Abstract:
A control system for a plant is disclosed. According to this system, a model parameter vector of a controlled object model which is obtained by modeling the plant, is identified. A controller controls the plant using the identified model parameter vector. An identifying error of the model parameter vector is calculated, and an updating vector is calculated according to the identifying error. The updating vector has at least one first element which is relevant to an input or an output of the plant, and a second element which is irrelevant to the input and the output of the plant. The updating vector is corrected by multiplying a past value of at least one first element of the updating vector by a predetermined value which is greater than “0” and less than “1”, and multiplying a past value of the second element of the updating vector by “1”. The model parameter vector is calculated by adding the corrected updating vector to a reference vector of the model parameter vector.
Abstract:
An air-applying device has an impeller having a center of rotation, and a case which contains the impeller. The case includes a first edge defining an inlet port of air which exposes the center of rotation, a second edge defining an outlet port of air, and a high-pressure region which presents upon operational rotation of said impeller. The high-pressure region is located within the case along a peripheral portion of the impeller. A distance between the center of rotation of the impeller and the first edge is shorter in the direction from the center of rotation to a center of the high-pressure region than from the center of rotation to region other than the high-pressure region.
Abstract:
A control device of a cooling device controls a fan based on a desired temperature around a CPU set by a target value setting unit and a temperature detected by a temperature detecting unit, so that the temperature around the CPU substantially coincides with the set desired temperature. When the detected temperature exceeds the desired temperature, the control device causes the fan to rotate. At this time, the control device monitors the level of a noise generated by the fan by means of the noise detecting unit. The control device increases the value of the voltage supplied to the fan within a range in which the detected noise does not vary abruptly. As a result, the rotation speed is gradually increased to a predetermined value without causing an abrupt rise of a noise, which may acutely irritate the user.
Abstract:
The liquid cargo transport ship according to the invention is complete with a double-hull structure comprising a side plating 2 and an internal plating 3 for constituting the bottom and side construction respectively surrounding cargo tanks 4 available for loading liquid cargo. Space domain 5 formed between the side plating 2 and the internal plating 3 is utilized for constituting a plurality of ballast tanks.A plurality of tanks 12R and 12L solely being available for ballasting purpose are provided in part of the interior of cargo tanks 4R and 4L which are disposed in the central domain of the ship 1 in the fore-and-aft direction.