Three axis magnetic field sensor
    31.
    再颁专利

    公开(公告)号:USRE46428E1

    公开(公告)日:2017-06-06

    申请号:US15165600

    申请日:2016-05-26

    CPC classification number: H01L27/22 B82Y25/00 G01R33/093 H01L43/08

    Abstract: Three bridge circuits (101, 111, 121), each include magnetoresistive sensors coupled as a Wheatstone bridge (100) to sense a magnetic field (160) in three orthogonal directions (110, 120, 130) that are set with a single pinning material deposition and bulk wafer setting procedure. One of the three bridge circuits (121) includes a first magnetoresistive sensor (141) comprising a first sensing element (122) disposed on a pinned layer (126), the first sensing element (122) having first and second edges and first and second sides, and a first flux guide (132) disposed non-parallel to the first side of the substrate and having an end that is proximate to the first edge and on the first side of the first sensing element (122). An optional second flux guide (136) may be disposed non-parallel to the first side of the substrate and having an end that is proximate to the second edge and the second side of the first sensing element (122).

    Three axis magnetic field sensor
    32.
    再颁专利

    公开(公告)号:USRE46180E1

    公开(公告)日:2016-10-18

    申请号:US14638583

    申请日:2015-03-04

    CPC classification number: H01L27/22 B82Y25/00 G01R33/093 H01L43/08

    Abstract: Three bridge circuits (101, 111, 121), each include magnetoresistive sensors coupled as a Wheatstone bridge (100) to sense a magnetic field (160) in three orthogonal directions (110, 120, 130) that are set with a single pinning material deposition and bulk wafer setting procedure. One of the three bridge circuits (121) includes a first magnetoresistive sensor (141) comprising a first sensing element (122) disposed on a pinned layer (126), the first sensing element (122) having first and second edges and first and second sides, and a first flux guide (132) disposed non-parallel to the first side of the substrate and having an end that is proximate to the first edge and on the first side of the first sensing element (122). An optional second flux guide (136) may be disposed non-parallel to the first side of the substrate and having an end that is proximate to the second edge and the second side of the first sensing element (122).

    Fabrication process and layout for magnetic sensor arrays
    33.
    发明授权
    Fabrication process and layout for magnetic sensor arrays 有权
    磁传感器阵列的制造工艺和布局

    公开(公告)号:US09276200B2

    公开(公告)日:2016-03-01

    申请号:US14521213

    申请日:2014-10-22

    CPC classification number: H01L43/02 G01R33/098 H01L27/22 H01L43/08 H01L43/12

    Abstract: A magnetic sensor includes a plurality of groups, each group comprising a plurality of magnetic tunnel junction (MTJ) devices having a plurality of conductors configured to couple the MTJ devices within one group in parallel and the groups in series enabling independent optimization of the material resistance area (RA) of the MTJ and setting total device resistance so that the total bridge resistance is not so high that Johnson noise becomes a signal limiting concern, and yet not so low that CMOS elements may diminish the read signal. Alternatively, the magnetic tunnel junction devices within each of at least two groups in series and the at least two groups in parallel resulting in the individual configuration of the electrical connection path and the magnetic reference direction of the reference layer, leading to independent optimization of both functions, and more freedom in device design and layout. The X and Y pitch of the sense elements are arranged such that the line segment that stabilizes, for example, the right side of one sense element; also stabilizes the left side of the adjacent sense element.

    Abstract translation: 磁传感器包括多个组,每个组包括多个磁隧道结(MTJ)装置,其具有多个导体,其被配置成并联连接一组内的MTJ装置,并且该组可串联实现材料电阻的独立优化 面积(RA),并设置总的器件电阻,使得总的桥接电阻不是很高,以至于Johnson噪声成为限制信号的关键,而不是那么低,使得CMOS元件可能会削弱读取信号。 或者,串联的至少两组中的每一个中的磁隧道结装置和并联的至少两个组,导致电连接路径的单独配置和参考层的磁参考方向,导致两者的独立优化 功能,以及更多设备设计和布局自由。 感测元件的X和Y间距被布置成使得例如稳定一个感测元件的右侧的线段; 也稳定了相邻感测元件的左侧。

    Magnetoresistive stack and method of fabricating same

    公开(公告)号:US10516103B1

    公开(公告)日:2019-12-24

    申请号:US16551952

    申请日:2019-08-27

    Abstract: A magnetoresistive element (e.g., a spin-torque magnetoresistive memory element) includes a fixed magnetic layer, a free magnetic layer, having a high-iron alloy interface region located along a surface of the free magnetic layer, wherein the high-iron alloy interface region has at least 50% iron by atomic composition, and a first dielectric, disposed between the fixed magnetic layer and the free magnetic layer. The magnetoresistive element further includes a second dielectric, having a first surface that is in contact with the surface of the free magnetic layer, and an electrode, disposed between the second dielectric and a conductor. The electrode includes: (i) a non-ferromagnetic portion having a surface that is in contact with a second surface of the second dielectric, and (ii) a second portion having at least one ferromagnetic material disposed between the non-ferromagnetic portion of the electrode and the conductor.

    Magnetic field sensor
    38.
    发明授权

    公开(公告)号:US09640753B2

    公开(公告)日:2017-05-02

    申请号:US14168095

    申请日:2014-01-30

    CPC classification number: H01L43/10 G01R33/098 H01L43/12 Y10T29/49117

    Abstract: A sensor and fabrication process are provided for forming reference layers with substantially orthogonal magnetization directions having zero offset with a small compensation angle. An exemplary embodiment includes a sensor layer stack of a magnetoresistive thin-film based magnetic field sensor, the sensor layer stack comprising a pinning layer; a pinned layer including a layer of amorphous material over the pinning layer, and a first layer of crystalline material over the layer of amorphous material; a nonmagnetic coupling layer over the pinned layer; a fixed layer over the nonmagnetic coupling layer; a tunnel barrier over the fixed layer; and a sense layer over the nonmagnetic intermediate layer. Another embodiment includes a sensor layer stack where a pinned layer including two crystalline layers separated by a amorphous layer.

    Magnetoresistive memory element and method of fabricating same
    39.
    发明授权
    Magnetoresistive memory element and method of fabricating same 有权
    磁阻存储元件及其制造方法

    公开(公告)号:US09553258B2

    公开(公告)日:2017-01-24

    申请号:US14860657

    申请日:2015-09-21

    CPC classification number: H01L43/12 G11C11/161 H01L43/02 H01L43/08 H01L43/10

    Abstract: A magnetoresistive memory element (for example, a spin-torque magnetoresistive memory element), includes first and second dielectric layers, wherein at least one of the dielectric layers is a magnetic tunnel junction. The memory element also includes a free magnetic layer having a first surface in contact with the first dielectric layer and a second surface in contact with the second dielectric layer. The free magnetic layer, which is disposed between the first and second dielectric layers, includes (i) a first high-iron interface region located along the first surface of the free magnetic layer, wherein the first high-iron interface region has at least 50% iron by atomic composition, and (ii) a first layer of ferromagnetic material adjacent to the first high-iron interface region, the first high-iron interface region between the first layer of ferromagnetic material and the first surface of the free magnetic layer.

    Abstract translation: 磁阻存储元件(例如,自旋扭矩磁阻存储元件)包括第一和第二电介质层,其中至少一个电介质层是磁性隧道结。 存储元件还包括具有与第一介电层接触的第一表面和与第二介电层接触的第二表面的自由磁性层。 设置在第一和第二电介质层之间的自由磁性层包括(i)沿着自由磁性层的第一表面设置的第一高铁界面区域,其中第一高铁界面区域具有至少50 以及(ii)与第一高铁界面区域相邻的第一铁磁材料层,第一铁磁材料层与自由磁性层的第一表面之间的第一高铁界面区域。

Patent Agency Ranking