Abstract:
An electrically-modifiable, non-volatile, semiconductor memory comprising a plurality of user memory locations which can be addressed individually from outside the memory in order to read and to modify the data held therein is characterized in that, for each user memory location, there is a corresponding pair of physical memory locations in the memory, which assume, alternatively, the functions of an active memory location and of a non-active memory location, the active memory location containing a previously-written datum and the non-active memory location being available for the writing of a new datum to replace the previously-written datum, so that, upon a request to replace the previous datum with the new datum, the previous datum is kept in the memory until the new datum has been written.
Abstract:
The invention relates to a method of adjusting the erase/program voltage in semiconductor non-volatile memories. The memories are formed of at least one matrix of memory cells having a floating gate, a control gate, and drain and source terminals, and are organized by the byte in rows and columns, each byte comprising a group of cells having respective control gates connected in parallel with one another to a common control line through a selection element of the byte switch type, and each cell being connected to a respective control column through a selection element of the bit switch type. Advantageously, a double adjustment is provided for the program voltage of the memory cells, whereby the program voltage during the erasing phase can be higher in modulo than the program voltage during the writing phase. This is achieved by providing respective adjusters connected between a program voltage generator and the cell matrix, or alternatively forming the bit switch element inside a well and the byte switch element directly in the substrate.
Abstract:
A field effect transistor having a variable doping profile is presented. The field effect transistor is integrated on a semiconductor substrate with a respective active area of the substrate including a source and drain region. A channel region is interposed between the source and drain regions and has a predefined nominal width. The effective width of the channel region is defined by a variable doping profile.
Abstract:
A circuit structure integrated in a semiconductor substrate comprises at least one pair of transistors each being formed each in a respective active area region and having a source region and a drain region, as well as a channel region intervening between the source and drain regions and being overlaid by a gate region. The gate regions are connected electrically together by an overlying conductive layer and respective contacts. The contacts between the gate regions and the conductive layer are formed above the active areas.
Abstract:
Chip Outline Band (COB) structure for an integrated circuit integrated in a semiconductor chip having a semiconductor substrate of a first conductivity type and biased at a common reference potential of the integrated circuit, the COB structure comprising a substantially annular region formed in the substrate along a periphery thereof, and at least one annular conductor region superimposed on and contacting the substantially annular region, wherein the substantially annular region is electrically connected at the common reference potential.
Abstract:
A structure of electronic devices integrated in a semiconductor substrate with a first type of conductivity comprising at least a first HV transistor and at least a second LV transistor, each having a corresponding gate region. Said first HV transistor has lightly doped drain and source regions with a second type of conductivity, and said second LV transistor has respective drain and source regions with the second type of conductivity, each including a lightly doped portion adjacent to the respective gate region and a second portion which is more heavily doped and comprises a silicide layer.
Abstract:
An electronic memory circuit comprises a matrix of EEPROM memory cells. Each memory cell includes a MOS floating gate transistor and a selection transistor. The matrix includes a plurality of rows and columns, with each row being provided with a word line and each column comprising a bit line organized in line groups so as to group the matrix cells in bytes, each of which has an associated control gate line. A pair of cells have a common source region, and each cell symmetrically provided with respect to this common source region has a common control gate region.
Abstract:
A matrix of EEPROM memory cells having a double polysilicon level of MOS technology and being arranged into rows and columns is monolithically integrated on a substrate of semiconductor material. Each cell comprises, in series, a transistor of the floating gate type which includes two layers of polysilicon superposed on each other and separated by an intervening layer of a dielectric material, and a selection transistor having a gate which comprises a first layer of polysilicon. The gates of the selection transistors in one row of said matrix are connected electrically together by a selection line comprising a second layer of polysilicon overlying the first layer. The intermediate layer of dielectric material is also partly interposed between the first and second layers of polysilicon such that the two layers are in contact at at least one zone of said selection line. Preferably, the contact zone is formed over field oxide regions and is away from the edges of the selection line. The matrix can advantageously be fabricated by a process of the self-aligned type, without making the process any more complicated.
Abstract:
Three dimension memory arrays and methods of forming the same are provided. An example three dimension memory array can include a stack comprising a plurality of first conductive lines separated from one another by at least an insulation material, and at least one conductive extension arranged to extend substantially perpendicular to the plurality of first conductive lines, such that the at least one conductive extension intersects a portion of at least one of the plurality of first conductive lines. Storage element material is formed around the at least one conductive extension. Cell select material is formed around the at least one conductive extension.