Abstract:
One illustrative method disclosed herein includes forming a trench/via in a layer of insulating material, forming a barrier layer in the trench/via, forming a copper-based seed layer on the barrier layer, converting at least a portion of the copper-based seed layer into a copper-based nitride layer, depositing a bulk copper-based material on the copper-based nitride layer so as to overfill the trench/via and performing at least one chemical mechanical polishing process to remove excess materials positioned outside of the trench/via to thereby define a copper-based conductive structure. A device disclosed herein includes a layer of insulating material, a copper-based conductive structure positioned in a trench/via within the layer of insulating material and a copper-based silicon or germanium nitride layer positioned between the copper-based conductive structure and the layer of insulating material.
Abstract:
Copper can be etched with selectivity to Ta/TaN barrier liner and SiC hardmask layers, for example, to reduce the potential copper contamination. The copper film can be recessed more than the liner to further enhance the protection. Wet etch solutions including a mixture of HF and HCl can be used for selective etching copper with respect to the liner material, for example, the copper film can be recessed between 2 and 3 nm, and the barrier liner film can be recessed between 1.5 and 2 nm.
Abstract:
Copper can be etched with selectivity to Ta/TaN barrier liner and SiC hardmask layers, for example, to reduce the potential copper contamination. The copper film can be recessed more than the liner to further enhance the protection. Wet etch solutions including a mixture of HF and H2SO4 can be used for selective etching copper with respect to the liner material, for example, the copper film can be recessed between 2 and 3 nm, and the barrier liner film can be recessed between 1.5 and 2 nm.
Abstract:
A process of modulating the thickness of a barrier layer deposited on the sidewalls and floor of a recessed feature in a semiconductor substrate is disclosed. The process includes altering the surface of the conductive feature on which the barrier layer is deposited by annealing in a reducing atmosphere and optionally additionally, silylating the dielectric surface that forms the sidewalls of the recessed feature.
Abstract:
One illustrative method disclosed herein includes forming a trench/via in a layer of insulating material, forming a barrier layer in the trench/via, forming a copper-based seed layer on the barrier layer, converting at least a portion of the copper-based seed layer into a copper-based nitride layer, depositing a bulk copper-based material on the copper-based nitride layer so as to overfill the trench/via and performing at least one chemical mechanical polishing process to remove excess materials positioned outside of the trench/via to thereby define a copper-based conductive structure. A device disclosed herein includes a layer of insulating material, a copper-based conductive structure positioned in a trench/via within the layer of insulating material and a copper-based silicon or germanium nitride layer positioned between the copper-based conductive structure and the layer of insulating material.
Abstract:
Methods of forming interconnects. An interconnect opening is formed in a dielectric layer. A first conductor layer composed of a first metal is formed in the interconnect opening. A second conductor layer is formed inside the interconnect opening by displacing the first metal of the first conductor layer and replacing the first metal with a second metal different from the first metal.
Abstract:
The present disclosure generally relates to semiconductor structures and, more particularly, to dielectric repair for via and skip via structures and methods of manufacture. The method includes: etching a via structure in a dielectric layer; repairing sidewalls of the via structure with a repair agent; and extending the via structure with an additional etching into a lower dielectric layer to form a skip via structure exposing a metallization layer.
Abstract:
The present disclosure generally relates to semiconductor structures and, more particularly, to via and skip via structures and methods of manufacture. The method includes: forming a first metallization layer with a first capping layer over the first metallization layer; forming a second metallization layer with a second capping layer over the second metallization layer; forming a partial skip via structure to the first metallization layer by removing a portion of the first capping layer and the second capping and depositing conductive material in an opening formed in the second metallization layer; forming a third capping layer over the filled partial skip via and the second capping layer; and forming a remaining portion of a skip via structure in alignment with the partial skip via structure by opening the third capping layer to expose the conductive material of the partial skip via.
Abstract:
The present disclosure generally relates to semiconductor structures and, more particularly, to fully aligned via structures having relaxed gapfills and methods of manufacture. The method includes: selectively depositing a capping material on a conductive material within a plurality of interconnect structures to form capped interconnect structures; depositing at least one insulator material over the capped interconnect structures; forming a fully aligned via structure through the at least one insulator material to expose the capping material; filling the fully aligned via structure with an alternative metal; and depositing a metal material on the alternative metal in the fully aligned via structure.
Abstract:
Semiconductor structure and methods of fabrication thereof are provided which includes, for instance, providing a carbon-doped material layer within a recess of a semiconductor structure; removing, in part, carbon from the carbon-doped material layer to obtain, at least in part, a carbon-depleted region thereof, the carbon-depleted region having a modified etch property with an increased etch rate compared to an etch rate of the carbon-doped material layer; and recessing the carbon-depleted region of the carbon-doped material layer by an etching process, with the carbon-depleted region being recessed based upon, in part, the modified etch property of the carbon-depleted region.