Abstract:
A local interconnect structure includes a substrate having a dielectric layer and at least one semiconductor contact structure embedded in the dielectric layer. An electrically conductive material is deposited in a non-eroded contact trench that defines at least one electrically conducive contact via. The contact via extends from a first end that is flush with an upper surface of the dielectric layer to a second end that contacts the at one semiconductor contact structure. A local conductive material layer is formed in the dielectric layer and contacts the first end of the contact via. The non-eroded contact trench includes sharp upper corners formed at approximately ninety degrees with respect to the first end of the contact via.
Abstract:
Methods for forming a semiconductor gate electrode with a reflowed Co layer and the resulting device are disclosed. Embodiments include forming a trench in an ILD on a substrate; forming a high-k dielectric layer, a WF layer, and a Co layer sequentially on sidewall and bottom surfaces of the trench; reflowing a portion of the Co layer from the WF layer on the sidewall surfaces of the trench to the WF layer on the bottom surface of the trench; removing a remainder of the Co layer from the WF layer on the sidewall surfaces of the trench, above an upper surface of the reflowed Co; recessing the WF layer to the upper surface of the reflowed Co layer, forming a cavity above the reflowed Co layer; and filling the cavity with metal to form a gate electrode.
Abstract:
One method disclosed herein includes, among other things, forming at least one layer of insulating material above a semiconductor layer, performing at least one contact opening etching process to form a contact opening in the at least one layer of insulating material that exposes a portion of the semiconductor layer, selectively depositing a metal-oxide insulating material through the contact opening on the exposed surface of the semiconductor layer, and forming a conductive contact in the contact opening that contacts the metal-oxide insulating material.
Abstract:
One method disclosed herein includes, among other things, a method of forming a contact structure to a source/drain region of a transistor device. The transistor device includes a gate structure and a gate cap layer positioned above the gate structure. The method includes forming an extended-height epi contact structure that is conductively coupled to the source/drain region. The extended-height epi contact structure includes an upper surface that is positioned at a height level that is above a height level of an upper surface of the gate cap layer. The method further includes performing an etching process to trim at least a lateral width of a portion of the extended-height epi contact structure, and, after performing the etching process, forming a metal silicide material on at least a portion of the trimmed extended-height epi contact structure and forming a conductive contact on the metal silicide material.