Abstract:
A method for continuously managing thermal energy in a motor vehicle includes initializing a continuous thermal energy management control loop within a controller disposed in the motor vehicle, calculating a quantity of stored energy in a thermal management system equipped to the motor vehicle, calculating a quantity of thermal energy waste in the thermal management system, determining if thermal energy is needed within a component of the thermal management system, selectively generating thermal energy, selectively transporting thermal energy to the component of the thermal management system, determining a thermal storage capacity of the thermal management system, determining if a thermal energy deficit exists within the thermal management system, and directing a flow of a thermal energy carrying liquid to a thermal energy reservoir.
Abstract:
A vehicle powertrain thermal management system for distributing thermal energy to vehicle powertrain components, including an engine and a transmission. The system for managing heat energy includes a coolant pump, a first control valve, a second control valve, a radiator, a heater core, and a transmission oil heat exchanger. The first control valve has an inlet that is in fluid communication with the engine coolant outlet. The first control valve also has a first control valve outlet. The second control valve has a first inlet, a second inlet, a first outlet, a second outlet and a third outlet. Heat energy produced by the engine is transferred to the radiator through control of the first control valve and to at least one of the heater core, and the transmission oil heat exchanger through the control of the second control valve.
Abstract:
A method for coolant pump flow rationalization using coolant pump parameters includes calculating a first pump coolant flow based on a coolant input pressure sensor signal and the coolant pump speed. Further, the method includes calculating a second pump coolant flow based on coolant pump current and coolant pump speed when the first pump coolant flow is greater than a predetermined threshold; and comparing the first pump coolant flow with the second pump coolant flow to rationalize the coolant pressure sensor signal.
Abstract:
A coolant control system of a vehicle includes first and second target flowrate modules, a target speed module, and a speed control module. The first target flowrate module determines a first target flowrate of coolant through an engine. The second target flowrate module, when a change in heat input to the engine is greater than a predetermined value, sets a second target flowrate to greater than the first target flowrate. The target speed module determines a target speed of an engine coolant pump based on the second target flowrate. The speed control module controls a speed of the engine coolant pump based on the target speed.
Abstract:
An automobile vehicle exhaust gas heat recovery system includes an engine having a turbocharger. A cooling pump provides coolant flow to the engine and the turbocharger. A combined coolant discharge header receives coolant discharged from the engine and the turbocharger. A main rotary valve receives coolant discharged from the combined coolant discharge header. The main rotary valve includes multiple rotary valves selectively distributing all of the coolant in the combined coolant discharge header to at least one of an engine heater, a heater core and a transmission oil heater during a cold start operation. An exhaust gas heat recovery (EGHR) device is positioned to receive the coolant discharged from any one, any two or all of the engine heater, the heater core and the transmission oil heater and in a path to return the coolant to the cooling pump during the cold start operation of the engine.
Abstract:
A method is disclosed for optimizing fuel economy during an engine warm up phase of operation of an internal combustion engine. An exhaust manifold may have a coolant jacket through which a coolant may flow. A temperature of the coolant in the exhaust manifold may be determined to detect when it is at a predetermined maximum threshold, which represents a temperature threshold just below a temperature at which the coolant will begin to boil. When this threshold is reached, then a determination may be made as to a minimum rate of flow of the coolant through the exhaust manifold which maintains the coolant at about the predetermined maximum threshold, and the coolant may be flowed through the exhaust manifold at the determined minimum rate of flow.
Abstract:
A coolant control system of a vehicle includes a pump control module and a coolant valve control module. The pump control module selectively activates a coolant pump. The coolant pump pumps coolant into coolant channels formed in an integrated exhaust manifold (IEM) of an engine. The coolant valve control module selectively actuates a coolant valve that controls coolant flow from the coolant channels formed in the IEM to a transmission heat exchanger based on a first temperature of a transmission and a second temperature of coolant within the integrated exhaust manifold of the engine.
Abstract:
A coolant control system of a vehicle includes a target pressure module and a thermostat valve control module. The target pressure module determines a target pressure of coolant in a coolant path between a thermostat valve and at least one of an engine oil heat exchanger and a transmission fluid heat exchanger. The thermostat valve control module closes the thermostat valve and blocks coolant flow out of an engine when a temperature of coolant within the engine is less than a predetermined temperature. When the temperature is greater than the predetermined temperature, the thermostat valve control module controls opening of the thermostat valve to the coolant path based on the target pressure.
Abstract:
A method is applied to regenerate particulate matter in a particulate filter of a hybrid electric vehicle having a combination of a combustion engine and an electric motor for propelling the vehicle, the hybrid electric vehicle having an electrically heated catalyst disposed in flow communication with the particulate filter in an exhaust system of the vehicle. The method determines whether the combustion engine is or is not combusting fuel, and under a condition where the combustion engine is not combusting fuel, the catalyst is electrically heated until it has reached a temperature suitable to cause ignition of the particulate matter. The electric motor is used to facilitate rotation of the combustion engine at a rotational speed suitable to draw air into and be exhausted out of the combustion engine into the exhaust system, across the catalyst, and into the particulate filter to facilitate ignition of the particulate in the filter.
Abstract:
A system includes a mode module and an energy module. The mode module generates a mode signal based on a temperature of an engine and at least one of a deceleration signal and a regenerative braking signal. The energy module, based on the mode signal, increases cooling of a coolant of the engine during at least one of a deceleration event of a vehicle and a regenerative braking event. The energy module, while increasing the cooling of the coolant, supplies an overvoltage to a cooling pump of the engine.