Abstract:
Systems and methods for forecasting events can be provided. A measurement database can store sensor measurements, each having been provided by a non-portable electronic device with a primary purpose unrelated to collecting measurements from a type of sensor that collected the measurement. A measurement set identifier can select a set of measurements. The electronic devices associated with the set of measurements can be in close geographical proximity relative to their geographical proximity to other devices. An inter-device correlator can access the set and collectively analyze the measurements. An event detector can determine whether an event occurred. An event forecaster can forecast a future event property. An alert engine can identify one or more entities to be alerted of the future event property, generate at least one alert identifying the future event property, and transmit the at least one alert to the identified one or more entities.
Abstract:
Various arrangements for light distribution incorporated as part of a device are presented. A circular light guide may be used that receives light from a plurality of light emitters that can be arranged in a circular pattern. A conical reflector may be used and may be positioned to reflect light emitted from the circular light guide onto an exterior of a case of the device. The conical reflector may reflect light such that light is reflected by the exterior of the case in the shape of a halo into an ambient environment of the device.
Abstract:
Various embodiments of a smoke chamber for a smoke detector are presented. Such a smoke chamber may include a housing, having a first portion and a second portion. The first portion may be through which an electromagnetic sensor and two or more electromagnetic emitters interact with an airspace within the housing. The second portion may have an airflow surface that at least partially defines a curved airflow path between the airspace within the housing and an external environment. The curved airflow path may curve radially outward.
Abstract:
A multilayered circuit board having a metal-free region vertically extending through at least a portion of a conductive layer, which lies generally parallel to a horizontal plane, vertically spaced from an outer surface. Heat-emitting and heat-sensitive components are mounted on the outer surface. The heat-emitting component is vertically and laterally spaced from the metal-free region, whereas the heat-sensitive component is vertically spaced and laterally aligned within the metal-free region such that the metal-free region is a thermal barrier that shields heat-sensitive component from radial heat flowing from the heat-emitting component.
Abstract:
Various arrangements for using multiple wavelengths of electromagnetic radiation to detect smoke by a smoke detector are present. Multiple modes of the smoke detector may be used in which a first wavelength of electromagnetic radiation is emitted into a smoke chamber while a second electromagnetic radiation emitter is disabled, a period of time is waited, and a second wavelength of electromagnetic radiation is emitted into the smoke chamber while the first emitter is disabled. Depending on the mode of the smoke detector, the period of wait time may be varied.
Abstract:
According to one embodiment, a smart home device includes a front casing that is coupleable with a back plate to define a housing having an interior region within which one or more components of the smart home device are contained. The smart home device also includes an occupancy sensor that is disposed within the interior region of the smart home device and a button cap component that is positioned axially in front of the occupancy sensor. The button cap component is pressable by a user to actuate a switch that is disposed axially behind the button cap component. The smart home device further includes a lighting component that is positioned axially behind the button cap component. The lighting component is configured to disperse light circumferentially around the button cap component so as to provide a visual halo effect around the button cap component.
Abstract:
According to one embodiment, a hazard detector may include a back plate and a front casing coupled to the back plate to define a housing having an interior region and an opening through which air flows into the interior region. A circuit board may be coupled to the back plate and have a plurality of components mounted thereon. A smoke chamber may be mid-mounted on the circuit board, mid-mounting being characterized in the smoke chamber extending through a hole formed in the circuit board such that a top surface of the smoke chamber is positioned above a top surface of the circuit board and a bottom surface of the smoke chamber is positioned below a bottom surface of the circuit board, whereby an interior region of the smoke chamber is accessible to smoke from both the top and bottom surfaces of the circuit board.
Abstract:
An electrical connector for a hazard detector includes a socket body that includes four lateral walls, a rear wall, a catch feature and a catch support; the lateral walls adjoin one another and the rear wall, continuously and airtightly along edges thereof. The catch support adjoins two of the lateral walls along edges of the catch support to define a catch cavity and a plug cavity on opposing sides of the catch support. A first side of the rear wall faces the plug cavity and a second side bounds a rear surface of the socket body. The catch feature couples with the catch support. Electrical pins pass through the rear wall of the socket body such that one end of each of the pins is within the plug cavity, and an opposing end of each of the pins extends away from the rear surface of the socket body.
Abstract:
Various embodiments of a smoke chamber for a smoke detector are presented. Such a smoke chamber may include a housing, having a first portion and a second portion. The first portion may be through which an electromagnetic sensor and two or more electromagnetic emitters interact with an airspace within the housing. The second portion may have an airflow surface that at least partially defines a curved airflow path between the airspace within the housing and an external environment. The curved airflow path may curve radially outward.