Abstract:
Disclosed are a composite particle and a method of manufacturing the same. The composite particle may have an appropriate level of particle diameter and may maintain a stable shape and internal porous structure when the composite particle is applied during a coating process at high temperature.
Abstract:
An intake valve for an engine supplies an intake gas to a combustion chamber of the engine, and an adiabatic coating layer including a polyamideimide resin and an aerogel dispersed in the polyamideimide resin and having thermal conductivity of 0.60 W/m or less may be formed on a surface portion that comes into contact with a flame during operation of the engine.
Abstract:
The present invention provides a low-friction coating layer for vehicle components comprising: a Ti layer on a surface of a base material; a TiN layer on the Ti layer surface; a TiAgN layer on the TiN layer surface; and an Ag layer transferred on the TiAgN layer surface, and a method for producing the same.
Abstract:
Disclosed is a TiAgN coating layer, formed by subjecting a substrate having a surface roughness of about 0.05˜0.1 μm to plasma coating by periodically turning on/off an Ag source while a Ti source is continuously turned on in a nitrogen gas atmosphere, a TiAgN coating method, and a TiAgN coating apparatus.
Abstract:
Disclosed is a multi-layer coating formed by repeatedly and sequentially laminating first coating layers composed of TiN and second coating layers composed of TiAgN on a surface, and a method of forming the same.
Abstract:
Disclosed are a manufacturing method for a porous thermal insulation coating layer, a porous thermal insulation coating layer with substantially reduced thermal conductivity and volumetric heat capacity and an internal combustion engine including the porous thermal insulation coating layer thereby having excellent durability.
Abstract:
An apparatus for manufacturing a thermoelectric module is provided. The apparatus includes a thermoelectric element interposed between a lower substrate that includes a lower electrode and an upper substrate that includes an upper electrode. Additionally, the apparatus includes a first block that is configured to support the lower substrate and a second block that is configured to move vertically with respect to the first block and support the upper substrate. A jig is configured to position the thermoelectric element in connection with the upper electrode and the lower electrode.
Abstract:
An apparatus for manufacturing a thermoelectric module is provided. The thermoelectric module includes thermoelectric pellets, first electrodes, second electrodes, and an insulating substrate. The apparatus includes a fixing tray to which the thermoelectric module is fixed, a first die including a first heating member configured to heat a first adhesive layer, which is interposed between the thermoelectric pellets and the first electrodes. The fixing tray is mounted on the first die such that the insulating substrate faces the first heating member. A second die includes a second heating member configured to heat a second adhesive layer, which is interposed between the thermoelectric pellets and the second electrodes, the second die facing the second electrodes. A transfer unit is configured to transfer at least one of the first die and the second die to adjust a distance between the first die and the second die.
Abstract:
A fuel cell separator includes a metal substrate having a surface; an ion penetration layer including carbon diffusion-inhibiting ions extending from the surface of the metal substrate into the metal substrate; and a carbon coating layer disposed on the surface of the metal substrate.
Abstract:
An exhaust system for a vehicle includes a heat insulation coating layer formed on an inner wall surface of an exhaust gas flow tube through which exhaust gas passes. The heat insulation coating layer includes an inorganic binder including two or more silicon-based compounds and an aerogel dispersed in the inorganic binder, includes 5 to 50 parts by weight of the aerogel for 100 parts by weight of the inorganic binder, and has heat conductivity of at most 1.0 W/mK, measured by ASTM E1461.