Abstract:
Techniques for sending an aggregated beacon in a cognitive wireless network are disclosed. A beacon device may segment beacon information and send beacon segments via a plurality of channels simultaneously. A certain information elements of the beacon information may be included in each beacon segment. Each beacon segment may include channel information for other beacon segments that are transmitted simultaneously. Alternatively, a discovery beacon may be transmitted in addition to a regular beacon. The discovery beacon may include information indicating an operating channel on which the regular beacon is transmitted. The discovery beacon may be transmitted using a predetermined channel bandwidth, with a smaller beacon interval than the regular beacon, or in a frequency hopping fashion. The discovery beacon may be sent on a channel selected based on a regulatory class and corresponding channel information. The discovery beacon may be transmitted on a side channel.
Abstract:
A method and apparatus for operating supplementary cells in licensed exempt (LE) spectrum. An aggregating cell operating in a frequency division duplex (FDD) licensed spectrum is aggregated with a LE supplementary cell operating in a time sharing mode for uplink (UL) and downlink (DL) operations. The LE supplementary cell may be an FDD supplementary cell dynamically configurable between an UL only mode, a DL only mode, and a shared mode, to match requested UL and DL traffic ratios. The LE supplementary cell may be a time division duplex (TDD) supplementary cell. The TDD supplementary cell may be dynamically configurable between multiple TDD configurations. A coexistence capability for coordinating operations between the LE supplementary cell with other systems operating in the same channel is provided. Coexistence gaps are provided to measure primary/secondary user usage and permit other systems operating in the LE supplementary cell channel to access the channel.
Abstract:
WTRUs, ARSs, APs, WLG/AAA proxies, networks, and methods thereon are disclosed for fast security setup on a multi-RAT WTRU. Methods of sharing security associations between RATs on a multi-RAT WTRU are disclosed. Methods of caching security associations are disclosed. Methods are disclosed for alerting an ANDSF server of an AP that should be considered for association. Enhancements to advertisements from an AP are disclosed where the advertisements may include SSID with a FQDN, a HESSID type information, or TAI type information. Methods of resolving AP identities to a reachable address are disclosed. An address resolution protocol is disclosed for resolving AP identities. ARSs are disclosed that may resolve a BSSID to a network routable address. Protocols for carrying AP identities and security parameters are disclosed. Methods are disclosed of using ANDSF to provide the WTRU with security information and parameters of an AP. An RSN may indicate security capabilities.
Abstract:
A method and apparatus are described that provides flexible spectrum usage by using a paired frequency division duplex (FDD) spectrum to enable dynamic access in television white space (TVWS), sub-leased spectrum or unlicensed spectrum, (e.g., industrial, scientific and medical (ISM) bands), in a femto cell environment or the like. Elastic FDD (E-FDD) enables femto cell operation in TVWS, sub-leased spectrum and/or unlicensed spectrum, either simultaneously with licensed spectrum or as an alternate channel to licensed spectrum. E-FDD enables dynamic asymmetric bandwidth allocation for uplink (UL) and downlink (DL) in FDD, and enables variable duplex spacing, (i.e., using FDD with minimum duplex spacing between DL and UL spectrum, or, using hybrid-FDD, (FDD in a time duplexed fashion), when a spectrum gap between the UL and DL spectrum is below a certain minimum threshold. Additionally, the signaling enhancements to implement E-FDD are also provided.
Abstract:
A method for sensing measurement gap scheduling includes allocating a new supplementary carrier in a license-exempt spectrum by a radio resource management (RRM) entity in an evolved Node B (eNB); configuring a local cognitive sensing entity in the eNB by the RRM entity; configuring a wireless transmit/receive unit (WTRU) for cognitive sensing through radio resource control (RRC) signaling, the RRC signaling being generated by the eNB; configuring a local cognitive sensing entity at the WTRU by a dynamic spectrum management (DSM) entity; and signaling a start and a duration of a measurement gap to an enhanced sensing component.
Abstract:
Systems and methods for dynamic white space management are described. First, local handling of channel queries, in which a channel query by a white space device (WSD) is handled by a local dynamic spectrum management (DSM) server, if the DSM server has all the information necessary for providing a response to the channel query. Second, a search extension, in which a WSDB passes part of a search for available channels to a local DSM server. Third, assisting of an available channel calculation, in which a DSM server provides spectrum sensing information to WSDBs to improve the available channel calculation within the WSDBs. And fourth, dynamic bandwidth management to meet the coexistence requirements. In addition, the content of the messages and procedures that enable the above value-adding functions and interactions with the WSDB systems are described.
Abstract:
A method for use in a Dynamic Spectrum Manager (DSM) for coordinating asynchronous silent periods in a network, the method comprising detecting a primary user in the network, transmitting a Silent Period Start Control Message to one or more cognitive radio (CR) nodes in the network, wherein the message indicates the start and duration of a silent period and initiates spectrum sensing, receiving a Measurement Report Control Message from the one or more CR nodes in the network indicating results of spectrum sensing, and transmitting a message to the one or more CR nodes, wherein the message instructs the one or more CR nodes to move to a different frequency based on the spectrum sensing results.
Abstract:
Embodiments contemplate techniques for managing aggregation between using an anchor channel over a first frequency band as the anchor band between an Access Point and a wireless receiver/transmitter unit (WTRU). One or more embodiments may include the WRTU receiving one or more beacons via the anchor channel, where the one or more beacons may provide allocation information for allocating a supplementary channel on a second frequency band as a supplementary band that may be different from the first frequency band. Embodiments also contemplate establishing the supplementary channel over the supplementary band using the allocation information provided in the one or more beacons. Embodiments also contemplate exchanging data over the established supplementary channel on the supplementary band.
Abstract:
A network has a central entity connected to a plurality of capillary networks and external networks. Information regarding the capillary networks and the external networks may be fused in the central entity to provide assistance services and network control to one or more of the capillary networks. The information may be collected from the capillary networks using a logical interface with a common upper layer coupled to multiple Radio Access Technologies (RATs). The central entity configures an internal communications network including a plurality of disparate devices, and recognizes and communicates with each device within the internal communications network by discovering each new device as introduced into the internal communications network. A communication link can be set up with reconfigurable or capable devices to exchange information possibly in another format in another band. The same communication link can be torn down after completion of the service.
Abstract:
WTRUs, ARSs, APs, WLG/AAA proxies, networks, and methods thereon are disclosed for fast security setup on a multi-RAT WTRU. Methods of sharing security associations between RATs on a multi-RAT WTRU are disclosed. Methods of caching security associations are disclosed. Methods are disclosed for alerting an ANDSF server of an AP that should be considered for association. Enhancements to advertisements from an AP are disclosed where the advertisements may include SSID with a FQDN, a HESSID type information, or TAI type information. Methods of resolving AP identities to a reachable address are disclosed. An address resolution protocol is disclosed for resolving AP identities. ARSs are disclosed that may resolve a BSSID to a network routable address. Protocols for carrying AP identities and security parameters are disclosed. Methods are disclosed of using ANDSF to provide the WTRU with security information and parameters of an AP. An RSN may indicate security capabilities.