Abstract:
A technique relates to an assembly for a quantum computing device. A quantum bus plane includes a first set of recesses. A readout plane includes a second set of recesses. A block is positioned to hold the readout plane opposite the quantum bus plane, such that the first set of recesses opposes the second set of recesses. A plurality of qubit chips are included where each has a first end positioned in the first set of recesses and has a second end positioned in the second set of recesses.
Abstract:
A technique relates to an assembly for a quantum computing device. A quantum bus plane includes a first set of recesses. A readout plane includes a second set of recesses. A block is positioned to hold the readout plane opposite the quantum bus plane, such that the first set of recesses opposes the second set of recesses. A plurality of qubit chips are included where each has a first end positioned in the first set of recesses and has a second end positioned in the second set of recesses.
Abstract:
A system for adjusting qubit frequency includes a qubit device having a Josephson junction and a shunt capacitor coupled to electrodes of the Josephson junction. A cantilevered conductor is separated from the shunt capacitor by a spacing. An adjustment mechanism is configured to deflect the cantilevered conductor to tune a qubit frequency for the qubit device.
Abstract:
A coplanar waveguide device includes a coplanar waveguide structure disposed on a substrate, at least one qubit coupled to the coplanar waveguide structure and an add-on chip having a metallized trench, and disposed over the substrate.
Abstract:
A method and system to control crosstalk among qubits on a chip are described. The method includes placing two or more components symmetrically on the chip, the chip including the qubits, and driving two or more ports symmetrically to control the crosstalk based on controlling coupling of chip mode frequencies and qubit frequencies.
Abstract:
A device includes a housing, at least two qubits disposed in the housing and a resonator disposed in the housing and coupled to the at least two qubits, wherein the at least two qubits are maintained at a fixed frequency and are statically coupled to one another via the resonator, wherein energy levels |03> and |12> are closely aligned, wherein a tuned microwave signal applied to the qubit activates a two-qubit phase interaction.
Abstract:
A system, method, and chip to control Purcell loss are described. The chip includes qubits formed on a first surface of a substrate. The method includes determining frequencies of the qubits, and controlling a separation between the frequencies of the qubits and chip mode frequencies of the chip.
Abstract:
A method for adjusting a resonance frequency of a qubit in a quantum mechanical device includes providing a substrate having a frontside and a backside, the frontside having at least one qubit formed thereon, the at least one qubit comprising capacitor pads; and removing substrate material from the backside of the substrate at an area opposite the at least one qubit to alter a capacitance around the at least one qubit so as to adjust a resonance frequency of the at least one qubit.
Abstract:
Techniques facilitating low thermal conductivity support systems within cryogenic environments are provided. In one example, a cryostat can comprise a support rod and a washer. The support rod can couple first and second thermal stages of the cryostat. The washer can intervene between the support rod and the first thermal stage. The washer can thermally isolate the support rod and the first thermal stage.
Abstract:
Devices and methods that facilitate modular quantum systems with discreet levels of connectivity are provided. In various embodiments, a quantum computing device can comprise one or more modules comprising at least qubits, buses, and readout structures; a plurality of couplers, wherein the plurality of couplers comprises at least two couplers selected from a group consisting of: classical couplers, short-range couplers, and long-range couplers, that are adapted for coupling a plurality of the at least qubits, buses, and readout structures; and a connection from the one or more modules to one or more classical controllers external to a cryogenic environment comprising the one or more modules.