摘要:
An SRAM device includes a substrate having at least one cell active region in a cell array region and a plurality of peripheral active regions in a peripheral circuit region, a plurality of stacked cell gate patterns in the cell array region, and a plurality of peripheral gate patterns disposed on the peripheral active regions in the peripheral circuit region. Metal silicide layers are disposed on at least one portion of the peripheral gate patterns and on the semiconductor substrate near the peripheral gate patterns, and buried layer patterns are disposed on the peripheral gate patterns and on at least a portion of the metal silicide layers and the portions of the semiconductor substrate near the peripheral gate patterns. An etch stop layer and a protective interlayer-insulating layer are disposed around the peripheral gate patterns and on the cell array region. Methods of forming an SRAM device are also disclosed.
摘要:
A semiconductor device includes a semiconductor substrate including a first region having a cell region and a second region having a peripheral circuit region, first transistors on the semiconductor substrate, a first protective layer covering the first transistors, a first insulation layer on the first protective layer, a semiconductor pattern on the first insulation layer in the first region, second transistors on the semiconductor pattern, a second protective layer covering the second transistors, the second protective layer having a thickness greater than that of the first protective layer, and a second insulation layer on the second protective layer and the first insulation layer of the second region.
摘要:
A nonvolatile memory device includes a semiconductor substrate having a first well region of a first conductivity type, and at least one semiconductor layer formed on the semiconductor substrate. A first cell array is formed on the semiconductor substrate, and a second cell array formed on the semiconductor layer. The semiconductor layer includes a second well region of the first conductivity type having a doping concentration greater than a doping concentration of the first well region of the first conductivity type. As the doping concentration of the second well region is increased, a resistance difference may be reduced between the first and second well regions.
摘要:
Methods of forming a single crystal semiconductor thin film on an insulator and semiconductor devices fabricated thereby are provided. The methods include forming an interlayer insulating layer on a single crystal semiconductor layer. A single crystal semiconductor plug is formed to penetrate the interlayer insulating layer. A semiconductor oxide layer is formed within the single crystal semiconductor plug using an ion implantation technique and an annealing technique. As a result, the single crystal semiconductor plug is divided into a lower plug and an upper single crystal semiconductor plug with the semiconductor oxide layer being interposed therebetween. That is, the upper single crystal semiconductor plug is electrically insulated from the lower plug by the semiconductor oxide layer. A single crystal semiconductor pattern is formed to be in contact with the upper single crystal semiconductor plug and cover the interlayer insulating layer. The single crystal semiconductor pattern is grown by an epitaxy growth technique using the upper single crystal semiconductor plug as a seed layer, or by a solid epitaxy growth technique using the upper single crystal semiconductor plug as a seed layer.
摘要:
Semiconductor integrated circuits that include thin film transistors (TFTs) and methods of fabricating such semiconductor integrated circuits are provided. The semiconductor integrated circuits may include a bulk transistor formed at a semiconductor substrate and a first interlayer insulating layer on the bulk transistor. A lower TFT may be on the first interlayer insulating layer, and a second interlayer insulating layer may be on the lower TFT. An upper TFT may be on the second interlayer insulating layer, and a third interlayer insulating layer may be on the upper TFT. A first impurity region of the bulk transistor, a first impurity region of the lower TFT, and a first impurity region of the upper TFT may be electrically connected to one another through a node plug that penetrates the first, second and third interlayer insulating layers.
摘要:
A semiconductor device includes a semiconductor substrate including a first region having a cell region and a second region having a peripheral circuit region, first transistors on the semiconductor substrate, a first protective layer covering the first transistors, a first insulation layer on the first protective layer, a semiconductor pattern on the first insulation layer in the first region, second transistors on the semiconductor pattern, a second protective layer covering the second transistors, the second protective layer having a thickness greater than that of the first protective layer, and a second insulation layer on the second protective layer and the first insulation layer of the second region.
摘要:
A non-volatile memory device includes a semiconductor substrate including a cell array region and a peripheral circuit region. A first cell unit is on the semiconductor substrate in the cell array region, and a cell insulating layer is on the first cell unit. A first active body layer is in the cell insulating layer and over the first cell unit, and a second cell unit is on the first active body layer. The device further includes a peripheral transistor on the semiconductor substrate in the peripheral circuit region. The peripheral transistor has a gate pattern and source/drain regions, and a metal silicide layer is on the gate pattern and/or on the source/drain regions of the peripheral transistor. A peripheral insulating layer is on the metal silicide layer and the peripheral transistor, and an etching protection layer is between the cell insulating layer and the peripheral insulating layer and between the metal silicide layer and the peripheral insulating layer.
摘要:
A phase change memory device and a method of fabricating the same are disclosed. The phase change memory device includes a first conductor pattern having a first conductivity type and a sidewall. A second conductor pattern is connected to the sidewall of the first conductor pattern to form a diode. A phase change layer is electrically connected to the second conductor pattern and a top electrode is connected to the phase change layer.
摘要:
SRAM cells having landing pads in contact with upper and lower cell gate patterns, and methods of forming the same are provided. The SRAM cells and the methods remove the influence resulting from structural characteristics of the SRAM cells having vertically stacked upper and lower gate patterns, for stably connecting the patterns on the overall surface of the semiconductor substrate. An isolation layer isolating at least one lower active region is formed in a semiconductor substrate of the cell array region. The lower active region has two lower cell gate patterns. A body pattern is disposed in parallel with the semiconductor substrate. The body pattern is formed to confine an upper active region, which has upper cell gate patterns on the lower cell gate patterns. A landing pad is disposed between the lower cell gate patterns. A node pattern is formed to simultaneously contact the upper cell gate pattern and the lower cell gate pattern.
摘要:
A non-volatile memory device includes a semiconductor substrate including a cell array region and a peripheral circuit region. A first cell unit is on the semiconductor substrate in the cell array region, and a cell insulating layer is on the first cell unit. A first active body layer is in the cell insulating layer and over the first cell unit, and a second cell unit is on the first active body layer. The device further includes a peripheral transistor on the semiconductor substrate in the peripheral circuit region. The peripheral transistor has a gate pattern and source/drain regions, and a metal silicide layer is on the gate pattern and/or on the source/drain regions of the peripheral transistor. A peripheral insulating layer is on the metal silicide layer and the peripheral transistor, and an etching protection layer is between the cell insulating layer and the peripheral insulating layer and between the metal silicide layer and the peripheral insulating layer.