Abstract:
The present invention relates to a silicon-based particle-polymer composite, which includes silicon-based particles; and a polymer coating layer formed on the silicon-based particles, in which the polymer coating layer includes metal-substituted poly(acrylic acid) in which hydrogen atoms in carboxyl groups of the poly(acrylic acid) chain are substituted with one or more selected from the group consisting of K, Na and Li.
Abstract:
The present invention relates to a negative electrode and a secondary battery including the same, and particularly, to a negative electrode which includes a negative electrode active material layer including first active material particles each in the form of a secondary particle in which a plurality of primary particles are agglomerated; and second active material particles, wherein the second active material particles have an average particle size (D50) equal to or less than an average particle size (D50) of the primary particles, the first active material particle is artificial graphite, and the second active material particle is a graphite-based particle, and a secondary battery, a battery module, and a battery pack including the same.
Abstract:
Disclosed are methods for combining a thermoplastic polymer with a carbon nanomaterial. More particularly, A method of preparing a thermoplastic polymer combined with a carbon nanomaterial includes combining the carbon nanomaterial with a pyrene derivative by stirring 1 to 40 wt % of a carbon nanomaterial, 1 to 40 wt % of a polycyclic aromatic hydrocarbon derivative, and 20 to 98 wt % of a solvent with a mechanical mixer. According to the present invention, the resulting materials exhibit excellent tensile strength, tensile modulus, electromagnetic shielding effects and anti-static effects, and the like.
Abstract:
The present invention relates to a conductive material for a secondary battery, including a pitch coated graphene sheet, an anode for a secondary battery including the same, and a lithium secondary battery including the electrode.
Abstract:
A charging and discharging method for a lithium secondary battery is provided, wherein, while charging or discharging the lithium secondary battery using a constant current, the charge current or allowable discharge current is modified by measuring the internal resistance of the lithium secondary battery. In the charging and discharging method for a lithium secondary battery according to the present disclosure, the charging time and charge capacity, or the discharge current amount and discharge capacity, may be appropriately harmonized, and thus the method may be usefully used as a charging method and a discharging method for a lithium secondary battery.
Abstract:
The present invention relates to an anode active material including natural graphite and mosaic coke-based artificial graphite, and a lithium secondary battery including the same. According to an embodiment of the present invention, an anode active material including natural graphite and mosaic coke-based artificial graphite is used, when applied to a lithium secondary battery, intercalation and deintercalation of lithium ions is more facilitated and conductivity of an electrode is improved even if no or little conductive material is used. Furthermore, the increase in conductivity can lead to not only a further improvement in rate performance of a lithium secondary battery but also a reduction in interfacial resistance.
Abstract:
Disclosed are a thermoplastic polymer combined with a carbon nanomaterial and a method of preparing the same. More particularly, a thermoplastic polymer combined with carbon nanomaterial, comprising 0.1 to 15 wt % of a carbon nanomaterial, 0.025 to 30 wt % of a polycyclic aromatic hydrocarbon derivative, and 55 to 99.875 wt % of a thermoplastic polymer, wherein the carbon nanomaterial and the polycyclic aromatic hydrocarbon derivative combine through π-π interaction, and the polycyclic aromatic hydrocarbon derivative covalently combines with the thermoplastic polymer, is disclosed. The thermoplastic polymer combined with the carbon nanomaterial and the method of preparing the same, according to the present invention, exhibit excellent tensile strength, tensile modulus, electromagnetic shielding effects and anti-static effects, and the like.