Abstract:
A method and system are disclosed for driving a plunger in a drug reservoir. In some embodiments, a variable friction element interconnects between a pushing shaft and a wall of the reservoir. For example, rotation of a driving element in a first direction relative to the pushing shaft may advance the pushing shaft in the reservoir. The friction element may have increased friction resistance to rotation of the pushing shaft in the first direction in comparison to frictional resistance to advancing the pushing shaft. For example, the increased friction may result from wedging a radial element between the pushing shaft and the wall of the reservoir.
Abstract:
A method and apparatus are disclosed for delivery of a drug to a recipient. In some embodiments, the delivery apparatus may unseal a drug containing reservoir. In some embodiments, the delivery rate may be controlled and/or adjustable. Optionally the apparatus may be disposable. Optionally, the apparatus may have a low profile and/or be wearable and/or attachable to the recipient. Optionally, discharge of the drug and/or unsealing of the reservoir may be driven by a plunger moving parallel to the base of the apparatus. Optionally, the apparatus may release a hypodermic needle into the recipient. Optionally, release of the hypodermic needle may be in a direction non-parallel and/or orthogonal to the direction of movement of the plunger. Optionally, prior to release, the hypodermic needle may be preserved in an aseptic state by a needle opening septum sealing a needle opening. Optionally, upon release, the hypodermic needle may pierce the needle opening septum.
Abstract:
An aspect of some embodiments of the current application is a doorstop to a drug delivery apparatus that encourages a user of the apparatus to perform the proper usage steps in the proper order. For example, a user may be expected to receive an injector in a transport state, open it to an open state, insert a cartridge, and/or close the cartridge before operation. The doorstop may have an obstructing mode, optionally preventing closing of the door. The cartridge may optionally have a non-obstructing mode allowing closing of the door. Inserting the cartridge may optionally cause a doorstop to move from the obstructing mode to the non-obstructing mode. In the non-obstructing mode the doorstop may optionally prevent removal of the cartridge.
Abstract:
A method is disclosed for state sensing and controlling of a multi-state drug delivery device. In some embodiments a power switch is reused as a state sensor. Optionally the state sensor may be toggled by user actions and/or the movements of parts of the device, for example needle and/or a protective element. Optionally, drug discharge and/or status indication is controlled in accordance with sensor output. In some embodiments control is by means of a processor. Alternatively or additionally, control is by means of simple physical circuits.
Abstract:
An apparatus (110) includes an activation mechanism (20) and a safety latch (122). The activation mechanism is operative to deploy a needle (116) to protrude out of a housing (112), the needle (116) having a longitudinal axis. The safety latch (122) is movably mounted on the housing (112) and formed with a needle opening (129) to allow the needle (116) to pass therethrough. The safety latch (122) has a first position wherein the needle (116) is aligned to pass through the needle opening (129) and a second position wherein the safety latch (122) is moved with respect to the housing (112) such that the needle (116) is blocked from movement in a direction parallel to the longitudinal axis thereof by a portion of the safety latch (122) distanced from the needle opening (129).
Abstract:
Apparatus is described for administering a substance to a subject. A vial contains the substance and a stopper is disposed within the vial and is slidably coupled to the vial. A first threaded element is (a) rotatable with respect to the vial and (b) substantially immobile proximally with respect to the vial during rotation of the first threaded element. A second threaded element is threadedly coupled to the first threaded element. At least a distal end of the second threaded element is substantially non-rotatable with respect to the vial, and the distal end of the second threaded element defines a coupling portion that couples the second threaded element to the stopper. The first threaded element, by rotating, linearly advances the stopper and at least the distal end of the second threaded element toward a distal end of the vial. Other embodiments are also described.
Abstract:
In accordance with some embodiments of the present invention there is provided a method of preparing a compound device for use. The device may include a sealed component and an active outer surface. The outer surface may be protected by a surface cover. Preparing the device may include activating the active outer surface by removing the surface cover and exposing an internal portion of the sealed component to the exterior of the device by unsealing the sealed component and synchronizing the activating and said unsealing using a coupler attached to the surface cover and the sealed component.
Abstract:
An assembly of a drug delivery system, comprising: a first component; a second component which is configured to move linearly with respect to the first component; and, a resistance element configured to resist linear movement during transport of the first component with respect to the second component in a closed transport configuration but which is adapted to be overcome during nominal operation of the drug delivery system.