Abstract:
Systems, methods and apparatuses to log memory errors in memory devices that can perform wear leveling based on physical addresses used in the memory devices to address select memory cells. For example, a controller of a memory sub-system communicates with a memory device installed in the memory sub-system to access memory cells in the memory device. During the communication to access memory cells in the memory device, the controller can determine a memory error at a first address. If the controller transmits the first address to the memory device for memory access at the time of the memory error, the memory device converts the first address to a second address to perform the memory access. The controller can be configured to determine the second address and record, in an error log, the memory error in association with the second address.
Abstract:
A system (100) for providing a timing signal with tunable temperature dependency in an electronic device may include a timing circuit (102) and an initial setting circuit (104). The timing circuit (102) may include a delay stage (106) and a gate stage (108). The delay stage (106) may be configured to receive an input signal and to produce a delayed signal by introducing a delay to the input signal. The gate stage (108) may be configured to receive the delayed signal and a threshold setting signal, to produce an output signal using the delayed signal and a logic threshold, and to set an initial value of the logic threshold according to the threshold setting signal. The initial setting circuit (104) may be configured to allow the threshold setting signal to be tuned for providing the time delay with a specified temperature dependency.
Abstract:
Methods, systems, and devices for leakage current reduction in electronic devices are described. Electronic devices may be susceptible to leakage currents when operating in a first mode, such as an inactive (e.g., a standby) mode. To mitigate leakage current, an electronic device may include transistors coupled in cascode configuration where a gate of a drain-side transistor in the cascode configuration is configured to be biased by an adjustable (e.g., a dynamic) control signal. When the transistors are inactive (e.g., “off”), the control signal may be adjusted to prevent leakage associated with the inactive transistors. Further, a source-side transistor in the cascode configuration may be configured to have a high threshold voltage (e.g., relative to the drain-side transistor).
Abstract:
Methods, systems, and devices are described for adjusting parameters of channel drivers based on temperature when a calibration component is unavailable. A memory device may determine whether a calibration component is available for use by the memory device. If not, the memory device may select an impedance setting for the driver that is based on an operating temperature of the memory device. A device or system may identify a temperature of a memory device, identify that a calibration component is unavailable to adjust a parameter of a driver of a data channel, select a value of the parameter based on the temperature and on identifying that the calibration component is unavailable, adjust the parameter of the driver of the data channel to the selected value, and transmit, by the driver operating using the selected value of the parameter, a signal over the channel.
Abstract:
A regulator includes an operational amplifier, a programmable offset voltage, and a circuit. The operational amplifier includes a non-inverting input, an inverting input, and an output. The programmable offset voltage is configured to cancel a built-in offset voltage of the regulator based on a code. The circuit is configured to set the code based on a sensed built-in offset voltage of the regulator in response to an offset cancellation calibration mode enable signal.
Abstract:
Methods, systems, and devices for leakage current reduction in electronic devices are described. Electronic devices may be susceptible to leakage currents when operating in a first mode, such as an inactive (e.g., a standby) mode. To mitigate leakage current, an electronic device may include transistors coupled in cascode configuration where a gate of a drain-side transistor in the cascode configuration is configured to be biased by an adjustable (e.g., a dynamic) control signal. When the transistors are inactive (e.g., “off”), the control signal may be adjusted to prevent leakage associated with the inactive transistors. Further, a source-side transistor in the cascode configuration may be configured to have a high threshold voltage (e.g., relative to the drain-side transistor).
Abstract:
Apparatuses and methods for capturing data using a divided clock are described. An example apparatus includes a clock divider configured to receive a DQS signal, and to provide divided clock signals. A divided clock signal of the divided clock signals has a frequency that is less than a frequency of the DQS signal. The example apparatus further includes a command circuit configured to receive a command, and to assert one of a plurality of flag signals based on the divided clock signals and on a defined latency from a time of receipt of the command. The example apparatus further includes a data capture circuit configured serially receive data associated with the command and to provide deserialized data responsive to the divided clock signals. The data capture circuit is further configured to sort the deserialized data based on the asserted one of the plurality of flag signals to provide sorted data.
Abstract:
Apparatuses and methods for protecting a circuit from an over-limit electrical condition are disclosed. One example apparatus includes a protection circuit coupled to a circuit to be protected. The circuit to be protected is coupled to a pad node. The protection circuit is configured to conduct current from the pad node to a reference voltage node to protect the circuit from an over-limit electrical condition. The protection circuit has a trigger circuit coupled to the pad node and configured to trigger a shunt circuit to conduct current from the pad node to the reference voltage node responsive to a voltage provided to the pad node having a voltage exceeding a trigger voltage. In some embodiments, the trigger circuit is matched to the circuit being protected.
Abstract:
Systems, methods and apparatuses to log memory errors in memory devices that can perform wear leveling based on physical addresses used in the memory devices to address select memory cells. For example, a controller of a memory sub-system communicates with a memory device installed in the memory sub-system to access memory cells in the memory device. During the communication to access memory cells in the memory device, the controller can determine a memory error at a first address. If the controller transmits the first address to the memory device for memory access at the time of the memory error, the memory device converts the first address to a second address to perform the memory access. The controller can be configured to determine the second address and record, in an error log, the memory error in association with the second address.
Abstract:
Systems, methods and apparatuses to log memory errors in memory devices that can perform wear leveling based on physical addresses used in the memory devices to address select memory cells. For example, a controller of a memory sub-system communicates with a memory device installed in the memory sub-system to access memory cells in the memory device. During the communication to access memory cells in the memory device, the controller can determine a memory error at a first address. If the controller transmits the first address to the memory device for memory access at the time of the memory error, the memory device converts the first address to a second address to perform the memory access. The controller can be configured to determine the second address and record, in an error log, the memory error in association with the second address.