Abstract:
A vision system for a vehicle includes a camera disposed at the vehicle and having a field of view exterior of the vehicle. The camera includes a lens and an imager. A control includes a processor that processes image data captured by the camera. A light emitting device includes at least one light emitting diode. The light emitting device, when the at least one light emitting diode is powered, emits near infrared light at a region encompassed by the field of view of the camera. The control, responsive to processing of image data captured by the camera, determines an ambient light level exterior the vehicle. The control, responsive to the determined ambient light level, automatically controls intensity of the near infrared light emitted by the light emitting device.
Abstract:
A vision and alert system of a vehicle includes a plurality of cameras configured to be disposed at a vehicle equipped with the vision and alert system so as to have respective fields of view exterior of the vehicle. The plurality of cameras, when disposed at the vehicle, includes a forward camera having a field of view forward of the vehicle. An image processor is operable to process image data captured by at least the forward camera. Responsive to image processing of captured image data when the cameras are disposed at the vehicle, the image processor is operable to determine a traffic condition on the road being traveled by the equipped vehicle. Responsive to the determined traffic condition being indicative of a threshold level of a traffic jam, the vision and alert system transmits a traffic alert communication to a remote system.
Abstract:
A vehicle vision system includes a camera disposed at a vehicle and having a field of view forwardly of the vehicle, and a control having an image processor. The control is operable to receive wireless communication that is associated with a traffic light ahead of the vehicle, with the wireless communication including a communicated status of the traffic light. The image processor, responsive to processing of captured image data, is operable to determine an imaged status of the traffic light. The control compares the imaged status with the communicated status and, when they correspond, confirms the status of the traffic light ahead of the vehicle. Responsive to a determination that the driver of the vehicle is not properly responding to the confirmed traffic light status, the system generate an alert to the driver of the vehicle and/or applies the brakes of the vehicle.
Abstract:
A trailer angle detection system for a vehicle includes a camera disposed at a rear portion of the vehicle and viewing rearward of the vehicle. A plurality of ultrasonic sensors is disposed at the rear portion of the vehicle and sense rearward of the vehicle. A control has at least one processor operable to process image data captured by the camera. Responsive to processing of image data captured by the camera, the control detects a trailer rearward of the vehicle and in the field of view of the camera. The at least one processor is operable to process sensor data captured by the ultrasonic sensors to determine a distance to portions of the trailer rearward of the vehicle. Responsive to processing of captured image data and processing of captured sensor data, the trailer angle detection system is operable to determine an angle of the trailer relative to the vehicle.
Abstract:
A communication system for vehicles includes a first communication device disposed at a trailer and a second communication device disposed at a vehicle. The communication device wirelessly transmits a communication to the second communication device, and the second communication device receives the transmitted communication from the first communication device. Responsive to processing of the transmitted communication received by the second communication device, the communication system determines an angle of the trailer relative to the vehicle. The first and second communication devices may include first and second dedicated short range communication devices. One of the devices may include spaced apart antennae, whereby the system may determine the angle of the trailer via triangulation based on an antenna of one of the communication devices and the spaced apart antennae of the other of the communication devices.
Abstract:
A communication system for a vehicle includes an antenna array for transmitting data to at least one other vehicle or structure. A control is operable to adjust a beam transmission of the antenna array responsive to determination of a driving condition of the vehicle. The control may adjust the beam transmission from an omnidirectional beam to a directed beam to enhance the transmission range of the beam. The control may adjust the beam transmission to the directed beam directed rearward of the vehicle responsive to a determination of a highway driving condition. The control may adjust the beam transmission responsive to a determination of at least one of (i) a highway driving condition, (ii) a high traffic driving condition, (iii) an intersection driving condition and (iv) a weather condition at the vehicle.
Abstract:
A vehicle monitoring system includes a central processor operable to receive vehicle inputs from multiple vehicles. The vehicle inputs are indicative of driving conditions of the vehicles. The central processor is operable to receive, for each vehicle of the multiple vehicles, an environment input indicative of the environment at that vehicle. Responsive to the vehicle inputs and the environment inputs, the central processor determines if one or more of the multiple vehicles is at or approaching a hazardous condition. Responsive to a determination that one or more of the multiple vehicles is a threatened vehicle at a potentially hazardous condition, the central monitoring system at least one of (i) actuates an alert of the threatened vehicle to alert a driver of the threatened vehicle of the determined hazardous condition and (ii) controls a vehicle system of the threatened vehicle to mitigate the determined hazardous condition.
Abstract:
A vision and alert system of a vehicle includes a plurality of cameras configured to be disposed at a vehicle equipped with the vision and alert system so as to have respective fields of view exterior of the vehicle. The plurality of cameras, when disposed at the vehicle, includes a forward camera having a field of view forward of the vehicle. An image processor is operable to process image data captured by at least the forward camera. Responsive to image processing of captured image data when the cameras are disposed at the vehicle, the image processor is operable to determine a traffic condition on the road being traveled by the equipped vehicle. Responsive to the determined traffic condition being indicative of a threshold level of a traffic jam, the vision and alert system transmits a traffic alert communication to a remote system.
Abstract:
A communication system for vehicles includes a plurality of communication devices integrated into a road. The communication devices are operable to wirelessly communicate with communication systems of vehicles traveling on the road. The communication devices may be electrically powered by solar power. The communication devices wirelessly communicate with a remote server of the communication system. The remote server receives information via the communication devices pertaining to the vehicles traveling on the road and, responsive at least in part to the received information, the remote server communicates information to the vehicles traveling on the road via the communication devices.
Abstract:
A vehicle monitoring system includes a central processor operable to receive vehicle inputs from multiple vehicles. The vehicle inputs are indicative of driving conditions of the vehicles. The central processor is operable to receive, for each vehicle of the multiple vehicles, an environment input indicative of the environment at that vehicle. Responsive to the vehicle inputs and the environment inputs, the central processor determines if one or more of the multiple vehicles is at or approaching a hazardous condition. Responsive to a determination that one or more of the multiple vehicles is a threatened vehicle at a potentially hazardous condition, the central monitoring system at least one of (i) actuates an alert of the threatened vehicle to alert a driver of the threatened vehicle of the determined hazardous condition and (ii) controls a vehicle system of the threatened vehicle to mitigate the determined hazardous condition.