摘要:
A system for inspecting a pattern shape operates to detect secondary electrons from a specimen by irradiation of a focused electron beam and perform arithmetic processing on this detected signal. The detected signal waveform is divided into a plurality of regions on the basis of a variation of the signal quantity. The size of the divided regions is used for quantitative evaluation of a three dimensional shape of the specimen. This system, especially by displaying measurement results of the pattern shape for each divided signal waveform (bottom width in the final shape, resist bottom width, etching shift quantity, and etching slope-angle component by the exposure), permits an easy check on which a component varies and how the component varies in all shape variations. With this arrangement, a pattern cross section information effective in determining etching process conditions can be acquired using images by an in-line SEM capable of nondestructive observation.
摘要:
In order to realize a means for acquiring three-dimensional shape information about patterns by nondestruction and evaluate a relationship between the three-dimensional shape information about these patterns and device properties, a semiconductor device pattern evaluating system is provided with a feature index calculating means for quantifying a property of a three-dimensional shape of a pattern to be evaluated, as feature index, a database that records therein a relationship between the feature index of each three-dimensional pattern shape and a device property of a circuit containing patterns each having the feature index, and a device property estimating means for estimating a property of a device circuit formed by the pattern to be evaluated, on the basis of the feature index of the three-dimensional pattern shape, which have been quantified by the feature index calculating means, and the information recorded in the database.
摘要:
This invention provides a method of measuring semiconductor pattern dimensions capable of realizing a stable and highly precise pattern dimension measurement technique even when the pattern cross-sectional shapes are changed and making the calculation amount relatively small to reduce the calculation time. More specifically, the relationship between cross-sectional shapes of a pattern and measurement errors in a specified image processing technique is evaluated in advance by the electron beam simulation in a pattern measurement system in a length measuring SEM, and in the actual dimension measurement, dimensions of an evaluation objective pattern are measured from image signals of a scanning electron microscope, and errors of the dimensional measurement of the evaluation objective pattern are estimated and revised based on the relationship between cross-sectional shapes of a pattern and measurement errors evaluated in advance, thereby realizing highly precise measurement where dimensional errors depending on pattern solid shapes are eliminated.
摘要:
The present invention relates to a system that automatically calculates optimal etching parameters in order to perform desired etching in an etching process in semiconductor manufacturing. A model representing etching parameters and an etching performance quantitative value at the time when etching is performed with the etching parameters is prepared in advance, and when desired etching is performed, optimal etching parameters are calculated from the model.
摘要:
The present invention is for providing a scanning electron microscope system adapted to output contour information fitting in with the real pattern edge end of a sample, and is arranged to generate a local projection waveform by projecting the scanning electron microscope image in the tangential direction with respect to the pattern edge at each point of the pattern edge of the scanning electron microscope image, estimate the cross-sectional shape of the pattern transferred on the sample by applying the local projection waveform generated at each point to a library, which has previously been created, correlating the cross-sectional shape with the electron beam signal waveform, obtain position coordinate of the edge end fitting in with the cross-sectional shape, and output the contour of the pattern as a range of position coordinates.
摘要:
The present invention aims at proposing a library creation method and a pattern shape estimation method in which it is possible, when estimating a shape based on comparison between an actual waveform and a library, to appropriately estimate the shape.As an illustrative embodiment to achieve the object, there are proposed a method of selecting a pattern by referring to a library, a method of creating a library by use of pattern cross-sectional shapes calculated through an exposure process simulation in advance, and a method for selecting a pattern shape stored in the library.
摘要:
The present invention is for providing a scanning electron microscope system adapted to output contour information fitting in with the real pattern edge end of a sample, and is arranged to generate a local projection waveform by projecting the scanning electron microscope image in the tangential direction with respect to the pattern edge at each point of the pattern edge of the scanning electron microscope image, estimate the cross-sectional shape of the pattern transferred on the sample by applying the local projection waveform generated at each point to a library, which has previously been created, correlating the cross-sectional shape with the electron beam signal waveform, obtain position coordinate of the edge end fitting in with the cross-sectional shape, and output the contour of the pattern as a range of position coordinates.
摘要:
A method of evaluating a resolution of a scanning electron microscope includes picking up a first image of a concave and convex pattern formed on a surface of a sample utilizing a first scanning electron microscope, picking up a second image of the concave and convex pattern on the sample utilizing a second scanning electron microscope, respectively processing the first image and the second image in order to evaluate unevenness in resolution between the first scanning electron microscope and the second scanning electron microscope, and determining whether a height of the concave and convex pattern as measured from a bottom thereof is sufficient so that no affection by a secondary electron emitted from the bottom of the concave and convex pattern is exhibited.
摘要:
Conventionally, there is no method for quantitatively evaluating the three-dimensional shape of an etched pattern in a non-destructive manner and it takes much time and costs to determine etching conditions. With the conventional length measuring method only, it has been impossible to detect an abnormality in the three-dimensional shape and also difficult to control the etching process. According to the present invention, variations in signal amounts of an SEM image are utilized to compute three-dimensional shape data on the pattern associated with the etching process steps, whereby the three-dimensional shape is quantitatively evaluated. Besides, determination of etching process conditions and process control are performed based on the three-dimensional shape data obtained. The present invention makes it is possible to quantitatively evaluate the three-dimensional shape of the etched pattern in a non-destructive manner. Further, the efficiency of determining the etching process conditions and a stable etching process can be realized.
摘要:
In monitoring of an exposure process, a highly isolative pattern greatly changed in a shape of cross section by fluctuations in the exposure dose and the focal position is an observation target. Especially, to detect a change in a resist shape of cross section from a tapered profile to an inverse tapered profile, one of the following observation methods is employed to obtain observation data: (1) a tilt image of a resist pattern is imaged by using tilt imaging electron microscopy, (2) an electron beam image of a resist pattern is imaged under imaging conditions for generating asymmetry on an electron beam signal waveform, and (3) scattering characteristic data of a resist pattern is obtained by an optical measurement system. The observation data is applied to model data created beforehand in accordance with the exposure conditions to estimate fluctuations in the exposure dose and the focal position.