Abstract:
Methods and systems for the fabrication of composite materials are generally described. Certain inventive methods and systems can be used to fabricate composite materials with few or no defects. According to certain embodiments, composite materials are fabricated without the use of an autoclave. In some embodiments, composite materials are fabricated in low pressure environments.
Abstract:
The use of elongated nanostructures in separators and associated devices and methods, including devices and methods for energy storage and/or use, are generally described. According to certain embodiments, the elongated nanostructures can extend from a first solid substrate to a second solid substrate. In some embodiments, the nanostructures penetrate a surface of the first solid substrate (e.g., a first electrode) and/or a surface of the second solid substrate (e.g., a second electrode). The elongated nanostructures can, according to certain embodiments, provide structural reinforcement between two substrates (e.g., between two electrodes) while maintaining electronic insulation between the two substrates.
Abstract:
The present invention provides methods for uniform growth of nanostructures such as nanotubes (e.g., carbon nanotubes) on the surface of a substrate, wherein the long axes of the nanostructures may be substantially aligned. The nanostructures may be further processed for use in various applications, such as composite materials. For example, a set of aligned nanostructures may be formed and transferred, either in bulk or to another surface, to another material to enhance the properties of the material. In some cases, the nanostructures may enhance the mechanical properties of a material, for example, providing mechanical reinforcement at an interface between two materials or plies. In some cases, the nanostructures may enhance thermal and/or electronic properties of a material. The present invention also provides systems and methods for growth of nanostructures, including batch processes and continuous processes.
Abstract:
The instant disclosure is related to the growth of carbon-based nanostructures and associated systems and products. Certain embodiments are related to carbon-based nanostructure growth using active growth materials comprising alkali metals and/or alkaline earth metals. In some embodiments, the growth of carbon-based nanostructures is performed at relatively low temperatures.
Abstract:
The present invention provides methods for uniform growth of nanostructures such as nanotubes (e.g., carbon nanotubes) on the surface of a substrate, wherein the long axes of the nanostructures may be substantially aligned. The nanostructures may be further processed for use in various applications, such as composite materials. For example, a set of aligned nanostructures may be formed and transferred, either in bulk or to another surface, to another material to enhance the properties of the material. In some cases, the nanostructures may enhance the mechanical properties of a material, for example, providing mechanical reinforcement at an interface between two materials or plies. In some cases, the nanostructures may enhance thermal and/or electronic properties of a material. The present invention also provides systems and methods for growth of nanostructures, including batch processes and continuous processes.
Abstract:
The use of elongated nanostructures in separators and associated devices and methods, including devices and methods for energy storage and/or use, are generally described. According to certain embodiments, the elongated nanostructures can extend from a first solid substrate to a second solid substrate. In some embodiments, the nanostructures penetrate a surface of the first solid substrate (e.g., a first electrode) and/or a surface of the second solid substrate (e.g., a second electrode). The elongated nanostructures can, according to certain embodiments, provide structural reinforcement between two substrates (e.g., between two electrodes) while maintaining electronic insulation between the two substrates.
Abstract:
The present disclosure relates to composite articles comprising non-linear elongated nanostructures and associated systems and methods. In certain embodiments, collections of carbon nanotubes or other elongated nanostructures can be used to provide mechanical reinforcement along multiple directions within a composite article.
Abstract:
Systems and methods for the formation of nanostructures, including carbon-based nanostructures, are generally described. In certain embodiments, substrate configurations and associated methods are described.
Abstract:
Various applications for structured CNT-engineered materials are disclosed herein. In one application, systems are disclosed, wherein a structured CNT-engineered material forms at least part of an object capable of providing its own structural feedback. In another application, systems are disclosed, wherein a structured CNT-engineered material forms at least part of an object capable of generating heat. In yet another application, systems are disclosed, wherein a structured CNT-engineered material forms at least part of an object capable of functioning as an antenna, for example, for receiving, transmitting, absorbing and/or dissipating a signal. In still another application, systems are disclosed, wherein a structured CNT-engineered material forms at least part of an object capable of serving as a conduit for thermal or electrical energy.
Abstract:
A multiscale composite materials with few or no void defects are described. The composite materials include a network of porous materials. Methods and systems for the fabrication of the composite materials are generally described. According to certain embodiments, composite materials are fabricated without the use of an autoclave or low pressure environments.