摘要:
Systems and methods for operating a nanometer-scale cantilever beam with a gate electrode. An example system includes a drive circuit coupled to the gate electrode where a drive signal from the circuit may cause the beam to oscillate at or near the beam's resonance frequency. The drive signal includes an AC component, and may include a DC component as well. An alternative example system includes a nanometer-scale cantilever beam, where the beam oscillates to contact a plurality of drain regions.
摘要:
Disclosed is a voltage sensitive resistor (VSR) write once (WO) read only memory (ROM) device which includes a semiconductor device and a VSR connected to the semiconductor device. The VSR WO ROM device is a write once read only device. The VSR includes a CVD titanium nitride layer having residual titanium-carbon bonding such that the VSR is resistive as formed and can become less resistive by an order of 102, more preferably 103 and most preferably 104 when a predetermined voltage and current are applied to the VSR. A plurality of the VSR WO ROM devices may be arranged to form a high density programmable logic circuit in a 3-D stack. Also disclosed are methods to form the VSR WO ROM device.
摘要翻译:公开了一种包括半导体器件和连接到半导体器件的VSR的一次(WO)只读存储器(ROM)器件的电压敏感电阻器(VSR)。 VSR WO ROM设备是一次写入只读设备。 VSR包括具有残留钛 - 碳键合的CVD氮化钛层,使得VSR是形成的电阻的,并且当预定的电压和电流被施加到电阻时,可以变得更小的电阻性为102,更优选为103,最优选为104。 VSR。 多个VSR WO ROM器件可以被布置成在3-D堆栈中形成高密度可编程逻辑电路。 还公开了形成VSR WO ROM器件的方法。
摘要:
A contact structure and a method of forming the contact structure. The structure includes: a silicide layer on and in direct physical contact with a top substrate surface of a substrate; an electrically insulating layer on the substrate; and an aluminum plug within the insulating layer. The aluminum plug has a thickness not exceeding 25 nanometers in a direction perpendicular to the top substrate surface. The aluminum plug extends from a top surface of the silicide layer to a top surface of the insulating layer. The aluminum plug is in direct physical contact with the top surface of the silicide layer and is in direct physical contact with the silicide layer. The method includes: forming the silicide layer on and in direct physical contact with the top substrate surface of the substrate; forming the electrically insulating layer on the substrate; and forming the aluminum plug within the insulating layer.
摘要:
A field effect transistor device includes a gate stack disposed on a substrate a first contact portion disposed on a first distal end of the gate stack, a second contact portion disposed on a second distal end of the gate stack, the first contact portion disposed a distance (d) from the second contact portion, and a third contact portion having a width (w) disposed in a source region of the device, the distance (d) is greater than the width (w).
摘要:
Fabricating of semiconductor devices includes: depositing epitaxially a SiGe layer onto both NFET and PFET portions of a Si surface; blanket disposing a first sequence of layers over the SiGe layer including a high-k dielectric and a metal, incorporating the first sequence of layers into the gatestacks and gate insulators of both NFET devices and PFET devices; the first sequence of layers is selected to yield desired device parameter values for the PFET devices; removing the gatestack, the gate dielectric, and the SiGe layer for the NFET devices, re-forming the NFET devices by deploying a second sequence of layers that include a second high-k dielectric and a second metal; the second sequence of layers is selected to yield desired device parameter values for the NFET devices.
摘要:
A field effect transistor device includes a gate stack portion disposed on a substrate, and a channel region in the substrate having a depth partially defined by the gate stack portion and a silicon region of the substrate, the silicon region having a sloped profile such that a distal regions of the channel region have greater depth than a medial region of the channel region.
摘要:
A semiconductor device includes a substrate and a gate stack disposed on the substrate. An upper layer of the gate stack is a metal gate conductor and a lower layer of the gate stack is a gate dielectric. A gate contact is in direct contact with the metal gate conductor.
摘要:
A method for fabricating a field effect transistor device includes forming a first conducting channel and a second conducting channel, forming a first gate stack on the first conducting channel to partially define a first device, forming second gate stack on the second conducting channel to partially define a second device, implanting ions to form a source region and a drain region connected to the first conducting channel and the second conducting channel, forming a masking layer over second device, a portion of the source region and a portion of the drain region, performing a first annealing process operative to change a threshold voltage of the first device, removing a portion of the masking layer to expose the second device, and performing a second annealing process operative to change the threshold voltage of the first device and a threshold voltage of the second device.
摘要:
After planarization of a gate level dielectric layer, a dummy structure is removed to form a recess. A first conductive material layer and an amorphous metal oxide are deposited into the recess area. A second conduct material layer fills the recess. After planarization, an electrical antifuse is formed within the filled recess area, which includes a first conductive material portion, an amorphous metal oxide portion, and a second conductive material portion. To program the electrical antifuse, current is passed between the two terminals in the pair of the conductive contacts to transform the amorphous metal oxide portion into a crystallized metal oxide portion, which has a lower resistance. A sensing circuit determines whether the metal oxide portion is in an amorphous state (high resistance state) or in a crystalline state (low resistance state).
摘要:
An antifuse structure and methods of forming contacts within the antifuse structure. The antifuse structure includes a substrate having an overlying metal layer, a dielectric layer formed on an upper surface of the metal layer, and a contact formed of contact material within a contact via etched through the dielectric layer into the metal layer. The contact via includes a metal material at a bottom surface of the contact via and an untreated or partially treated metal precursor on top of the metal material.