Abstract:
An electrical connector having a fusible element for mounting on a substrate includes an insulative housing and a contact terminal retained in the insulative housing. The contact terminal includes a resilient contacting arm extending beyond a mating face of the insulative housing and a soldering portion for mating with the fusible element. A gelatinous flux is deployed on the fusible element, and/or on the soldering portion, and/or between the fusible element and the soldering portion, and then flux is dried to immovably fix the fusible element with respect to the soldering portion. The dried flux will be re-juvenile to clean and remove an oxidized layer originally existed on the soldering portion so as to achieve robust welding quality. Besides, a method for trimming an electrical connector to have robust welding properties is also disclosed.
Abstract:
Disclosed herewith a socket connector configured with an insulative housing defining a mating interface surrounded with peripheral walls and a mounting surface. A plurality of passageways is defined between the mating interface and the mounting surface and having an opening at the mounting surface. The insulative housing includes an encampment associated with each of the passageway at the mounting surface, and includes an extension crossing over an inner wall of the passageway to substantially narrow the opening of the opening. The socket connector furthers includes a plurality of contact terminals each received in the passageway and further includes a curvilinear solder portion extending beyond the mounting surface. And the socket connector further is incorporated with a plurality of solder balls each disposed between the encampment and the curvilinear solder portion.
Abstract:
An electrical contact material includes a base material, a first number of plating layers forming a contact section and a second number of plating layers forming a soldering section, respectively. The second number of plating layers is provided on the base material and includes a Ni-plating layer directly on the base material and an organic antioxidant-plating layer on said Ni-plating layer.
Abstract:
An electrical connector assembly is provided for connecting an IC chip (2) to a printed circuit board (3). The electrical connector assembly includes a housing (1) engaging with the IC chip, a heat sink (6), a loading plate (4) and a number of first connecting portions (5). The loading plate is located between the heat sink and the housing and has a number of spring plates (41) extending toward the IC chip. The first connecting portions are provided for connecting the heat sink to the printed circuit board.
Abstract:
An IC socket (1) for receiving an IC package having a plurality of pins extending downwardly includes a base (2), a plurality of terminals (7) received in the base, a cover (5) mounted upon the base (2), and a cam (6). The cover (5) includes a carrying section (50) for carrying the IC package and a cam-receiving section (51). The carrying section (50) forms a plurality of through holes (500) for insertion of the pins of the IC package. The cam (6) is disposed at the cam-receiving section (51) for actuating the cover (5) to move with respect to the base (2) in a first direction A. The cam (6) is offset from a central line CL of the carrying section (50) which extends along the first direction A.
Abstract:
Provided herewith is a CPU socket made of composite configuration of passageways. The Socket includes an insulative housing defining an opening therein. A grid is securely assembled in the opening defining a plurality of passageways for securely receiving a contact terminal therein. The grid includes a plurality of latitudinal partitions, and a plurality of longitudinal partitions orthogonally intersected from each other so as to define the passageway across the opening.
Abstract:
An optical fiber inclinometer comprises a pair of fiber Bragg grating devices, a fixed base, a connection plate, and a rotatable base. One end of the connection plate is fixed to the fixed base, whereas the other end of the connection plate is connected to the rotatable base through the joint of a turning pair mechanism between them. The two ends of each fiber Bragg grating device are installed onto the fixed base and the rotatable base respectively, and the two devices are mounted on the opposite side of the connection plate. Once the rotatable base rotates around the joint of the connection plate, axial tensile elongation occurs in one of the fiber Bragg grating devices, whereas axial compressive deformation occurs in the other device. The rotation angle of the rotatable base relative to the connection plate can be obtained by measuring and calculating the Bragg wavelength drifts of the pair of fiber Bragg grating devices respectively.