摘要:
Techniques for ability enhancement are described. Some embodiments provide an ability enhancement facilitator system (“AEFS”) configured to automatically translate utterances from a first to a second language, based on speaker-related information determined from speaker utterances and/or other sources of information. In one embodiment, the AEFS receives data that represents an utterance of a speaker in a first language, the utterance obtained by a hearing device of the user, such as a hearing aid, smart phone, media player/device, or the like. The AEFS then determines speaker-related information associated with the identified speaker, such as by determining demographic information (e.g., gender, language, country/region of origin) and/or identifying information (e.g., name or title) of the speaker. The AEFS translates the utterance in the first language into a message in a second language, based on the determined speaker-related information. The AEFS then presents the message in the second language to the user.
摘要:
Techniques for ability enhancement are described. Some embodiments provide an ability enhancement facilitator system (“AEFS”) configured to enhance a user's ability to operate or function in a transportation-related context as a pedestrian or a vehicle operator. In one embodiment, the AEFS is configured perform vehicular threat detection based at least in part on analyzing image data. An example AEFS receives data that represents an image of a vehicle. The AEFS analyzes the received data to determine vehicular threat information, such as that the vehicle may collide with the user. The AEFS then informs the user of the determined vehicular threat information, such as by transmitting a warning to a wearable device configured to present the warning to the user.
摘要:
Techniques for ability enhancement are described. Some embodiments provide an ability enhancement facilitator system (“AEFS”) configured to enhance a user's ability to operate or function in a transportation-related context as a pedestrian or a vehicle operator. In one embodiment, the AEFS is configured to perform vehicular threat detection based on information received at a road-based device, such as a sensor or processor that is deployed at the side of a road. An example AEFS receives, at a road-based device, information about a first vehicle that is proximate to the road-based device. The AEFS analyzes the received information to determine threat information, such as that the vehicle may collide with the user. The AEFS then informs the user of the determined threat information, such as by transmitting a warning to a wearable device configured to present the warning to the user.
摘要:
Techniques for ability enhancement are described. Some embodiments provide an ability enhancement facilitator system (“AEFS”) configured to enhance voice conferencing among multiple speakers. Some embodiments of the AEFS enhance voice conferencing by recording, translating and presenting voice conference history information based on speaker-related information, wherein the translation is based on language identification using multiple speech recognizers and GPS information. The AEFS receives data that represents utterances of multiple speakers who are engaging in a voice conference with one another. The AEFS then determines speaker-related information, such as by identifying a current speaker, locating an information item (e.g., an email message, document) associated with the speaker, or the like. The AEFS records conference history information (e.g., a transcript) based on the determined speaker-related information. The AEFS then informs a user of the conference history information, such as by presenting a transcript of the voice conference and/or related information items on a display of a conferencing device associated with the user.
摘要:
Techniques for ability enhancement are described. Some embodiments provide an ability enhancement facilitator system (“AEFS”) configured to enhance a user's ability to operate or function in a transportation-related context as a pedestrian or a vehicle operator. In one embodiment, the AEFS is configured perform vehicular threat detection based at least in part on analyzing audio signals. An example AEFS receives data that represents an audio signal emitted by a vehicle. The AEFS analyzes the audio signal to determine vehicular threat information, such as that the vehicle may collide with the user. The AEFS then informs the user of the determined vehicular threat information, such as by transmitting a warning to a wearable device configured to present the warning to the user.
摘要:
Techniques for ability enhancement are described. Some embodiments provide an ability enhancement facilitator system (“AEFS”) configured to determine and present speaker-related information based on speaker utterances. In one embodiment, the AEFS receives data that represents an utterance of a speaker received by a hearing device of the user, such as a hearing aid, smart phone, media player/device, or the like. The AEFS identifies the speaker based on the received data, such as by performing speaker recognition. The AEFS determines speaker-related information associated with the identified speaker, such as by determining an identifier (e.g., name or title) of the speaker, by locating an information item (e.g., an email message, document) associated with the speaker, or the like. The AEFS then informs the user of the speaker-related information, such as by presenting the speaker-related information on a display of the hearing device or some other device accessible to the user.
摘要:
Techniques for sensory enhancement and augmentation are described. Some embodiments provide an audible assistance facilitator system (“AAFS”) configured to provide audible assistance to a user via a hearing device. In one embodiment, the AAFS receives data that represents an utterance of a speaker received by a hearing device of the user, such as a hearing aid, smart phone, media device, or the like. The AAFS identifies the speaker based on the received data, such as by performing speaker recognition. The AAFS determines speaker-related information associated with the identified speaker, such as by determining an identifier (e.g., name or title) of the speaker, by locating an information item (e.g., an email message, document) associated with the speaker, or the like. The AAFS then informs the user of the speaker-related information, such as by causing an audio representation of the speaker-related information to be output via the hearing device.
摘要:
An environment is described in which a processing system provides application-level usage information to users. In one scenario, for example, the processing system may provide personal usage information to a user who is operating a user device. The personal usage information itemizes the amount of data (and/or other resources) that has been consumed by each application run by the user device. In another scenario, the processing system may provide expected usage information associated with at least one candidate application provided by a marketplace system. The expected usage information describes an expected consumption of data (and/or other resources) by the candidate application upon running the candidate application by the user device. The processing system can tailor the expected usage information that it sends to a particular user based on user profile data. The user profile data describes a manner in which users operate applications.
摘要:
An environment is described in which a processing system provides application-level usage information to users. In one scenario, for example, the processing system may provide personal usage information to a user who is operating a user device. The personal usage information itemizes the amount of data (and/or other resources) that has been consumed by each application run by the user device. In another scenario, the processing system may provide expected usage information associated with at least one candidate application provided by a marketplace system. The expected usage information describes an expected consumption of data (and/or other resources) by the candidate application upon running the candidate application by the user device. The processing system can tailor the expected usage information that it sends to a particular user based on user profile data. The user profile data describes a manner in which users operate applications.
摘要:
In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the gap region between the first electrical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.