Abstract:
A device for UV curing a coating or printed ink on a workpiece such as an optical fiber comprises at least two UV light sources equally spaced around a central axis, each UV light source comprising a reflector and a cylindrical lens, and the UV curing device configured to receive a workpiece along the central axis. The reflectors are configured to substantially reduce the emitting angle of light from the UV light sources, thereby directing the light substantially through the cylindrical lenses, the cylindrical lenses focusing the light intensely along a surface of the workpiece.
Abstract:
Methods and systems are provided for ultra-violet curing, and in particular, for ultra-violet curing of optical fiber surface coatings. In one example, a curing device includes a first elliptic cylindrical reflector, with a second elliptic cylindrical reflector housed within the first elliptic cylindrical reflector. The first elliptic cylindrical reflector and second elliptic cylindrical reflector have a co-located focus, and a workpiece to be cured by the curing device may be arranged at the co-located focus.
Abstract:
Methods and systems are provided for ultra-violet curing, and in particular, for ultra-violet curing of optical fiber surface coatings. In one example, a curing device includes a first elliptic cylindrical reflector, with a second elliptic cylindrical reflector housed within the first elliptic cylindrical reflector. The first elliptic cylindrical reflector and second elliptic cylindrical reflector have a co-located focus, and a workpiece to be cured by the curing device may be arranged at the co-located focus.
Abstract:
A liquid chromatography flow cell including an integrated light source and an integrated detection chamber. The integrated light source includes a plurality of light emitting diodes (LEDs), wherein each LED emits light of a specific wavelength. The light emitted from the integrated light source is directed to pass through a sample in a flow chamber of the flow cell without any optical conditioning, and the light not absorbed by the sample flows out of the flow chamber directly into the integrated detection chamber, where an intensity of the unabsorbed light is measured by detectors coupled to the integrated chamber.
Abstract:
A method may comprise: supplying light energy from a light emitting device principally along a first axis; sensing the light energy with a light sensing device oriented along a second axis, wherein the second axis is oriented substantially orthogonally to the first axis; and adjusting the light energy in response to the sensed light energy. In this way, an amount of retro-reflected light incident at the light sensing device may be reduced, measurement error of the light sensing device may be reduced, and control precision and reliability of the lighting system for curing a work piece can be increased.
Abstract:
An edge-curing device may comprise a cylindrical lens, a linear array of light-emitting elements, and an aperture, each aligned symmetrically about a longitudinal plane in a housing, wherein the cylindrical lens is positioned between the linear array of light-emitting elements and the aperture, the aperture spans the length of the cylindrical lens and is positioned directly adjacent to an emitting face of the cylindrical lens, and light emitted from the linear array of light-emitting elements and passing through the cylindrical lens is emitted from the emitting face and focused by the aperture within a beam width centered about the longitudinal plane.
Abstract:
A system and method for monitoring and operating one or more light emitting devices is disclosed. In one example, light intensity within a dual elliptical reflecting chamber is sensed and operation of a fiber curing system is adjusted in response to an amount of sensed light energy.
Abstract:
A method for example of irradiating a light-curable material, may comprise irradiating light about a first axis from an array of light-emitting elements towards a light-curable surface, directing the irradiated light through an optical element interposed between the array of light-emitting elements and the light-curable surface, wherein a central axis of the optical element is offset from the first axis, and deflecting the irradiated light directed through the optical element asymmetrically away from the first axis towards the light-curable surface.
Abstract:
A light source may comprise a housing, a window mounted in a front plane of the housing, a window length spanning a front plane length, and a linear array of light-emitting elements within the housing. The linear array may be aligned with and emit light through the window, and the linear array may span the window length, wherein first and last light-emitting elements of the linear array are positioned adjacent to widthwise edges of the window, and wherein window sidewalls at the widthwise edges are aligned flush with housing sidewalls.
Abstract:
A lighting device may comprise a light emitting element and a reflector, the reflector comprising: a first opening surrounding the light emitting element and a second opening; reflector side walls forming the first and second openings, the reflector side walls divergently extending from the first opening away from the light emitting element to the second opening; and corner facets, wherein each corner facet is positioned over a corresponding reflector corner formed by an adjacent pair of reflector side walls at the first opening. In this way, a photosensitive work piece may be uniformly irradiated while mitigating under-curing and over-curing, and while reducing a coupling optics size and a distance between the light emitting elements and the work piece, thereby decreasing cure times and lowering manufacturing costs.