Abstract:
An exemplary printable composition of a liquid or gel suspension of diodes generally includes a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary apparatus may include: a plurality of diodes; at least a trace amount of a first solvent; and a polymeric or resin film at least partially surrounding each diode of the plurality of diodes. Various exemplary diodes have a lateral dimension between about 10 to 50 microns and about 5 to 25 microns in height. Other embodiments may also include a plurality of substantially chemically inert particles having a range of sizes between about 10 to about 50 microns.
Abstract:
A uniform luminance light-emitting diode (LED) circuit board includes a first primary trace and a second primary trace mounted on a substrate along a direction and are spaced apart, multiple LED strings mounted on the substrate along the direction and parallelly connected between the first primary trace and the second primary trace, a first power trace and a second power trace respectively connected to the first primary trace and the second primary trace, and a first auxiliary trace with two ends respectively connected to the second primary trace and the second power trace. By adjusting trace widths of the first primary trace and the second primary trace to limit current passing through each LED string and using the first auxiliary trace to provide an additional current path, identical current flowing through all the LED strings results in uniform luminance of the LED strings.
Abstract:
A light source may comprise a housing, a window mounted in a front plane of the housing, a window length spanning a front plane length, and a linear array of light-emitting elements within the housing. The linear array may be aligned with and emit light through the window, and the linear array may span the window length, wherein first and last light-emitting elements of the linear array are positioned adjacent to widthwise edges of the window, and wherein window sidewalls at the widthwise edges are aligned flush with housing sidewalls.
Abstract:
A light source may comprise a housing, a window mounted in a front plane of the housing, a window length spanning a front plane length, and a linear array of light-emitting elements within the housing. The linear array may be aligned with and emit light through the window, and the linear array may span the window length, wherein first and last light-emitting elements of the linear array are positioned adjacent to widthwise edges of the window, and wherein window sidewalls at the widthwise edges are aligned flush with housing sidewalls.
Abstract:
A light fixture includes a fixture body, a support structure, a plurality of light emitting diodes (LEDs) a driver, a cover, and a connector. The fixture body includes a first raceway, a second raceway, and a channel. The second raceway is substantially parallel to the first raceway. The channel is coupled to the first raceway and the second raceway such that the channel is substantially orthogonal to the first raceway and the second raceway. The support structure is coupled to the first raceway and the second raceway. The plurality of LEDs is coupled to the support structure and spaced apart along a length of the support structure between the first raceway and the second raceway. The driver is positioned within the channel and electrically coupled to the plurality of LEDs. The cover is detachably coupled to the channel and extends from the first raceway to the second raceway.
Abstract:
The disclosed lighting arrangement includes adhesive transfer tape. The adhesive transfer tape has an adhesive layer disposed directly on a release liner, and the release liner is separable from the adhesive layer. Power wires are adhered directly to the adhesive layer, and solid state lighting elements are disposed on the adhesive layer and coupled to the power wires.
Abstract:
A lighting apparatus includes a light source located on a centerline, a light redirecting lens positioned to receive light from the light source, and an outer reflector that receives light redirected by the redirecting lens. The redirecting lens includes an inner reflecting portion that includes a total internal reflection (TIR) surface that reflects light outward to an outer refracting portion. The outer refracting portion of the redirecting lens refracts the light outward and away from the position of the light source. The outer reflector receives the refracted light and reflects the inward toward the centerline and farther away from the light source. The lighting apparatus further includes a diffuser that diffuses the light from the outer reflector. The lighting apparatus may be configured longitudinally or may be configured to be rotationally symmetrical with respect to the centerline.
Abstract:
A light assembly contains a troffer containing a housing. One or more LED light units are contained within the troffer, wherein each of the LED light units contain only one corresponding conductive end cap. A pair of conductors extending from each of the corresponding conductive end caps are mated with a corresponding socket contained within a DC power supply module contained within the troffer.
Abstract:
An LED lamp A1 includes a plurality of LED modules 1 and a substrate 2 on which the LED modules 1 are mounted in a row. A light guide 3 covering the LED modules 1 is provided on the substrate 2. The light guide 3 is held in close contact with each of the LED modules. With this arrangement, a proper amount of light is obtained with the use of a smaller number of LED modules 1 or with less power consumption.
Abstract:
An LED lamp A1 includes a plurality of LED modules 1 and a substrate 2 on which the LED modules 1 are mounted in a row. A light guide 3 covering the LED modules 1 is provided on the substrate 2. The light guide 3 is held in close contact with each of the LED modules. With this arrangement, a proper amount of light is obtained with the use of a smaller number of LED modules 1 or with less power consumption.