Abstract:
The system and method of the present invention establishes a communication link between a user equipment (UE) and a base station in a communication system having a plurality of base stations which each transmit a common primary synchronization code (PSC) in a primary synchronization channel in conjunction with a base station specific secondary synchronization code (SSC) within a system frame, which receives with the UE an input signal including the PSC and SSC from at least one of the base stations. The UE analyzes the input signal to detect any received PSCs within a selected time period which has duration corresponding to the length of a system frame and determining a relative location of a strongest PSC within the selected time period. The input signal is then processed to remove the PSC from at least the determined PSC location. A secondary synchronization code (SSC) is then detected for the determined location from the processed signal. The communication link is then established using the detected SSCs.
Abstract:
A connection between a wireless transmit/receive unit (WTRU) and another node through a wireless network is established. The connection is used for communication. A user input is received. In response to the received user input, a communication through the connection is recoded while the WTRU still communicates the communication to a user of the WTRU. The recorded communication is retrieved and the recorded communication is communicated to the user at a later time.
Abstract:
Tokens/keys are produced for wireless communications. These tokens/keys are used for watermarks, signature insertion, encryption and other uses. In one embodiment, contextual information is used to generate tokens/keys. The tokens/keys may be derived directly from the contextual information. The contextual information may be used in conjunction with other information to derive the tokens/keys. Tokens/keys may be exchanged between transmit/receive units. The exchange of these tokens/keys may be encrypted.
Abstract:
A method for adjusting the operating parameters of a wireless device for use in a wireless communication network begins by entering and storing situation settings. When a communication is received at the network for the wireless device, the presence of the wireless device is determined. The situation settings are applied based upon the presence of the wireless device. The wireless device is informed of the communication via the applied situation settings.
Abstract:
A technique for software ring tone detection is disclosed utilizing, in the preferred embodiment, a recursive algorithm. The technique provides flexibility in that a digital signal processor may be reprogrammed to detect ring tone frequencies and amplitudes present in numerous different countries.
Abstract:
A method and apparatus for enhancing communication services in an evolved global system for mobile communications (GSM)/enhanced data rates for GSM evolution (EDGE) radio access network (GERAN) are disclosed. At least one full rate physical channel and/or half rate physical channel are provided to support communication services that do not require higher order modulation (HOM), and at least one fractional rate physical channel is provided to support the communication services that require HOM. The fractional rate channel occupies N timeslots for every M frames of a channel, whereby N/M is less than one half. The fractional rate channel may be used when communication services are provided on a channel that uses either 16 or 32 quadrature amplitude modulation (QAM) in a dual transfer mode (DTM) session. The communications services include at least one of voice communication services, circuit switched (CS) services and supplementary services.
Abstract:
A wireless communication method and system for performing bit-interleaved coded modulation and iterative decoding. The system includes a transmitter and a receiver. The transmitter encodes incoming bits to generate coded bits, punctures the coded bits in accordance with a predetermined puncturing pattern to generate surviving channel bits and stolen bits and interleaves the surviving bits into interleaved surviving bits. The interleaved surviving bits are mapped to channel symbols and the stolen bits are interleaved to generate interleaved stolen bits. At least one of a plurality of antennas is selected to transmit the channel symbols based on the value of the interleaved stolen bits. The receiver receives the transmitted channel symbols, estimates a posteriori probability for both the channel symbols and the stolen bits, and retrieves information of the stolen bits by determining the selected antenna used to transmit the channel symbols.
Abstract:
A system and method for supporting mobile Internet communication is provided which employs a plurality of Routers and a plurality of Mobile Nodes (MNs). Each Router has a unique communication address. Each MN is associated with a home Router. Each Router has an associated Mobile Node Location List identifying each MN for which the Router is the home Router and the communication address of a Router corresponding to a current location of each such MN. Each MN is movable from an old location where the MN communicates with the Internet via one Router to a current location where the MN communicates with the Internet via a different Router. Communication at the current location via the different Router is established by communicating to the MN's home Router the communication address of the different Router as the communication address corresponding to the MN's current location. Accordingly, a data communication from a corresponding node (CN) to a selected MN is communicated to the selected MN by accessing the Mobile Node Location List of the selected MN's home Router to determine the communication address corresponding to the selected MN's current location and directing the data communication to that determined communication address.
Abstract:
In a wireless communication system comprising at least one wireless transmit/receive unit (WTRU), a base station, and a radio network controller (RNC), a method for constant envelope orthogonal frequency division multiplexing (CE-OFDM) modulation comprises the WTRU performing an inverse transform on the data. The WTRU next performs constant envelope (CE) modulation on the data and transmits the CE-OFDM data to the base station. The base station receives the data and CE demodulates the data. The base station performs a transform on the demodulated data.
Abstract:
Classes of cognition models which may include: 1) Radio Environment models, 2) Mobility models and 3) Application/User Context models are utilized in a wireless communications network. Radio Environment models represent the physical aspects of the radio environment, such as shadowing losses, multi-path propagation, interference and noise levels, etc. Mobility models represent users motion, in terms of geo-coordinates and/or logical identifiers, such as street names etc. as well as speed of user terminal etc. The context model represents the present state and dynamics of each of these application processes within itself and between multiple application processes. These data are employed to optimize network performance.